• 1.88 MB
  • 2022-04-29 14:09:19 发布

《控制工程基础》习题.doc

  • 42页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'《控制工程基础》习题集机电系“控制工程基础”教研小组编二OO五年十一月第42页共42页 目录●第一部分:单选题……………………………………………1●第二部分:多选题(多选、少选、错选均不得分)……………………………13●第三部分:简答题……………………………………………24●第四部分:建模题……………………………………………27●第五部分:稳定性分析题……………………………………36●第六部分:结构图简化题……………………………………37●第七部分:时域分析题………………………………………41●第八部分:频域分析题………………………………………44●第九部分:稳态分析题………………………………………47●第十部分:校正分析题………………………………………50第42页共42页 第一部分:单选题1.自动控制系统的反馈环节中必须具有[b]a.给定元件b.检测元件c.放大元件d.执行元件2.在直流电动机的电枢回路中,以电流为输入,电压为输出,两者之间的传递函数是[a]a.比例环节b.积分环节c.惯性环节d.微分环节3.如果系统不稳定,则系统[a]a.不能工作b.可以工作,但稳态误差很大c.可以工作,但过渡过程时间很长d.可以正常工作4.在转速、电流双闭环调速系统中,速度调节器通常采用[B]调节器。a.比例b.比例积分c.比例微分d.比例积分微分5.单位阶跃函数1(t)的拉氏变换式L[1(t)]为[B]:a.Sb.c.d.S26.在直流电动机的电枢回路中,以电流为输出,电压为输入,两者之间的传递函数是[A]A.比例环节B.积分环节C.惯性环节D.微分环节7.如果系统不稳定,则系统[A]第42页共42页 A.不能工作B.可以工作,但稳态误差很大C.可以工作,但过渡过程时间很长D.可以正常工作8.已知串联校正网络(最小相位环节)的渐近对数幅频特性如下图所示。试判断该环节的相位特性是[A]:A.相位超前       B.相位滞后C.相位滞后-超前    D.相位超前-滞后9.在转速、电流双闭环调速系统中,速度调节器通常采用[B]调节器。A.比例B.比例积分C.比例微分D.比例积分微分10.已知某环节的幅相频率特性曲线如下图所示,试判定它是何种环节[惯性环节]:11.PI调节器是一种(a)校正装置。A.相位超前B.相位滞后C.相位滞后-超前D.相位超前-滞后第42页共42页 12.开环增益K增加,系统的稳定性(c):A.变好B.变坏C.不变D.不一定13.开环传递函数的积分环节v增加,系统的稳定性(C):A.变好B.变坏C.不变D.不一定14.已知f(t)=0.5t+1,其L[f(t)]=(c):A.S+0.5S2B.0.5S2C.D.15.自动控制系统的反馈环节中必须具有(b):A.给定元件B.检测元件C.放大元件D.执行元件16.PD调节器是一种(a)校正装置。A.相位超前B.相位滞后C.相位滞后-超前D.相位超前-滞后17.已知最小相位系统的开环对数幅频特性曲线的渐近线如下图所示,试确定其开环增益K(c)。A、0;B、5;C、10;D、120L(ω)(-20)(+20)dB(rad/s))3510123018.已知系统的特征方程为S3+S2+τS+5=0,则系统稳定的τ值范围为(c)。τ>0;B.τ<0;C.τ>5;D.0<τ<519.开环传递函数的积分环节v增加,系统的稳态性能(C):A.变好B.变坏C.不变D.不一定第42页共42页 20.在阶跃函数输入作用下,阻尼比(d)的二阶系统,其响应具有减幅振荡特性。A.ζ=0B.ζ>1C.ζ=1D.0<ζ<121.振荡环节的传递函数为(a)。A.ωn/(S2+2ξωnS+1)(0<ξ<1);B.ωn/(S2+2ξωnS+1)(ξ=1);C.T2/(T2S2+2ξTS+1)(0<ξ<1);D.1/[S(TS+1)]22.函数b+ce-at(t≥0)的拉氏变换是(c)。A、bS+c/(S+1);B、bS–c/(S+a);C、b/S+c/(S+a);D、b/S+c/(S-a)23.反映控制系统稳态性能的指标为(b):A.σB.tsC.trD.ess24.在阶跃函数输入作用下,阻尼比(a)的二阶系统,其响应具有等幅振荡性。A.ζ=0B.ζ>1C.ζ=1D.0<ζ<125.如果自控系统微分方程的特征方程的根在复平面上的位置均在右半平面,那么系统为(b)系统:A.稳定B.不稳定C.稳定边界D.不确定第42页共42页 26.在右图所示的波特图中,其开环增益K=()。A、ωc2/ω1;B、ωc3/ω1ω2;C、ω2ωc/ω1;D、ω1ωc/ω2ω1ω2ωc-20-40-20L(ω)ω27.某机械平移系统如图所示,则其传递函数的极点数P为()。A.3;B.4;C.5;D.6m1m228.典型二阶振荡系统的()时间可由响应曲线的包络线近似求出。A、峰值;B、延时;C、调整;D、上升29.cos2t的拉普拉斯变换式是〔〕A.B.C.D.30.控制系统的稳态误差反映了系统的〔〕A.快速性B.稳态性能C.稳定性D.动态性能31.对于典型二阶系统,在欠阻尼状态下,如果增加阻尼比ξ的数值,则其动态性能指标中的最大超调量将〔〕A.增加B.不变第42页共42页 C.不一定D.减少32.开环增益K增加,系统的稳态性能():A.变好B.变坏C.不变D.不一定33.开环传递函数的积分环节v增加,系统的稳态性能():A.变好B.变坏C.不变D.不一定34.已知系统的开环传递函数为:G(S)H(S)=K(τS+1)/[(T1S+1)(T2S+1)(T2S2+2ζTS+1)],则它的对数幅频特性渐近线在ω趋于无穷大处的斜率为()(单位均为dB/十倍频程)。A、-20;B、-40;C、-60;D、-8035.以下频域性能指标中根据开环系统来定义的是()。截止频率ωb;B、谐振频率ωr与谐振峰值Mr;C、频带宽度;D、相位裕量г与幅值裕量Kg36.开环增益K减小,系统的稳定性():A.变好B.变坏C.不变D.不一定37.如果自控系统微分方程特征方程的根在复平面上的位置均在右半平面,那么系统为()系统:A.稳定B.不稳定C.稳定边界D.不确定38.以下性能指标中不能反映系统响应速度的指标为()A.上升时间tr    B.调整时间tsC.幅值穿越频率ωcD.相位穿越频率ωg第42页共42页 39.已知f(t)=0.5t+1,其L[f(t)]=():A.S+0.5S2B.0.5S2C.D.40.系统的开环对数幅频特性的()表征着系统的稳态性能。A.低频渐近线(或其延长线)在ω=1处的高度;B.中频段的斜率;C.中频段的宽度;D.高频段的斜率41.对于典型二阶系统,当阻尼比不变时,如果增加无阻尼振荡频率ωn的数值,则其动态性能指标中的调整时间ts()。A、增加;B、减少;C、不变;D、不定42.对于典型二阶系统,当()时,最大超调量σ为0。A、ζ=0;B、ζ=1;C、0<ζ<1;D、ζ<043.下列函数既可用初值定理求其初值又可用终值定理求其终值的为:()。A.5/(S2+25);B.5/(S2+16);C.1/(S-2);D.1/(S+2)44.已知系统的频率特性为G(jω)=K(1+j0.5ω)/[(1+j0.3ω)(1+j0.8ω)],其相频特性∠G(jω)为()。A、arctg0.5ω–arctg0.3ω–arctg0.8ωB、-arctg0.5ω–arctg0.3ω–arctg0.8ωC、-arctg0.5ω+arctg0.3ω+arctg0.8ωD、arctg0.5ω+arctg0.3ω+arctg0.8ω45.根据下面的开环波德图,试判断闭环系统的稳定性()。第42页共42页 A、稳定;B、不稳定;C、条件稳定;D、临界稳定20lgL(dB)-180°046.函数b+ce-at(t≥0)的拉氏变换是()。A、bS+c/(S+1);B、bS–c/(S+a);C、b/S+c/(S+a);D、b/S+c/(S-a)47.系统的开环对数幅频特性的()表征着系统的稳态性能。A、频渐近线(或其延长线)在ω=1处的高度;B.中频段的斜率;C.中频段的宽度;D.高频段的斜率48.对于典型二阶系统,当阻尼比不变时,如果增加无阻尼振荡频率ωn的数值,则其动态性能指标中的调整时间ts()。A、增加;B、减少;C、不变;D、不定49.振荡环节的传递函数为()。A.ωn/(S2+2ξωnS+1)(0<ξ<1);B.ωn/(S2+2ξωnS+1)(ξ=1);C.T2/(T2S2+2ξTS+1)(0<ξ<1);D.1/[S(TS+1)]50.对于典型二阶系统,当()时,最大超调量σ为0。A、ζ=0;B、ζ=1;C、0<ζ<1;D、ζ<051.下列函数既可用初值定理求其初值又可用终值定理求其终值的为:()。A.5/(S2+25);B.5/(S2+16);第42页共42页 C.1/(S-2);D.1/(S+2)52.典型二阶系统在无阻尼情况下的阻尼比ξ等于〔〕A.ξ=0B.ξ<0C.0<ξ<1D.ξ=153.下列元件中属于线位移测量元件的有〔〕A.自整角机B.差动变压器C.热电偶D.交流测速发电机54.某环节的传递函数为则此系统的相频特性〔〕A.+tg-12ω-tg-15ωB.-+tg-12ω-tg-15ωC.--tg-12ω-tg-15ωD.tg-12ω-tg-15ω55.在右图所示的伯德图中ωC=〔〕A.KB.C.D.K256.对于典型Ⅰ型系统,在工程设计中,其阻尼比ξ=()时称为“二阶最佳”系统〔〕A.ξ=0B.ξ=0.707C.ξ=1D.ξ=0.557.已知某单位负反馈控制系统在单位加速度信号作用下,其稳态误差等于不为0的常数,则此系统为()系统A.0型B.Ⅰ型第42页共42页 C.Ⅱ型D.Ⅲ型58.2sin2t的拉普拉斯变换式是〔〕A.B.C.D.59.如果增加相位稳定裕量γ,则动态性能指标中的最大超调量σ〔〕A.增加B.减少C.可能增加也可能减少D.不变60.控制系统的调整时间tS反映了系统的〔〕A.快速性B.稳态性能C.稳定性D.准确性61.某二阶系统的传递函数Φ(S)=,此系统的阻尼比ξ等于〔〕A.1B.0.5C.D.62.一般来说,如果开环系统增加积分环节,则其闭环系统稳定性〔〕A.变好B.变坏C.可能变好也可能变坏D.不变63.某系统的开环传递函数为则此系统的开环增益为〔〕A.3B.2C.1D.5第42页共42页 64.在右图所示的伯德图中ωC=〔〕A.K2B.C.D.K65.已知系统的开环传递函数为,则在ω→∞时,它的频率特性的相位角为〔〕A.–270oB.–180oC.-90oD.90o66.设是前向通道传递函数的一个参数,则对参数的灵敏度定义为,对于具有正反馈环节的闭环系统的闭环传递函数对参数的灵敏度为。A、;B、;C、;D、;67.已知系统的传递函数为G(s)=10/(s2+2s+10),系统输入x(t)=2cos0.5t,则该系统的稳态输出为()。A、1.54cos(0.5t-0.302)B、2.04cos(0.5t-0.102)C、1.04cos(0.5t-0.302)D、2.54cos(0.5t-0.202)68.下列说法哪些是对的()。A、传递函数的概念不适合于非线性系统;第42页共42页 B、传递函数中各项系数值和相应微分方程中各项系数对应相等,完全取决于系统的结构参数。C、传递函数是在零初始条件下,系统输出量的拉氏变换和引起该输出的输入量的拉氏变换之比。D、控制系统的稳定性是指在去掉作用于系统上的外界扰动之后,系统的输出能以足够的精度恢复到原来的平衡状态位置,它是由系统本身的结构所决定的而与输入信号的形式无关。69.4.已知函数,则的终值A.零B.无穷大C.aD.1/a70.5.某系统的传递函数,则等于A.0.01rad/sB.0.1rad/sC.1rad/sD.10rad/s71.设单位反馈系统开环传递函数为G(s),试求使系统的谐振峰值M=1.5的剪切频率及K值。(1)G(s)=(2)G(s)=(3)G(s)=(4)G(s)=第42页共42页 第三部分:简答题1.对自动控制系统性能指标的主要要求是什么?而MP、N反映了系统的什么,TS反映了系统的什么,eSS又反映了系统的什么;2.试说明串联校正的优点与不足。3.试分析PID调节器性能。4.在位置随动系统中,采用转速负反馈校正,对系统的动态性能有何影响?5.叙述系统开环增益K的大小、积分环节个数v的多少与系统稳定性和稳态性能的关系;6.系统稳定的充要条件是什么?(从系统特征根的分布来分析)7.简述奈氏稳定判据内容;8.叙述系统开环对数幅频特性L(ω)低频段渐近线斜率大小,L(ω)在ω=1处的高度对系统稳态精度的影响。9.对PWM控制的大功率晶体管直流调压电路,采用调制频率为400Hz的方波较50Hz方波供电的优点是什么?10.试述“传递函数”、“频率特性”的定义;11.经典控制理论的数学模型有几种形式?写出时域中数学模型的通式。12.试分析比较串联校正与反馈校正的优点与不足。13.试分析积分环节、惯性环节、微分环节对系统稳定性的影响,并说出理由。第42页共42页 14.已知f(t)=0.5t+1,其L[f(t)]=多少?15.开环系统与闭环系统的最本质区别及其优缺点比较。16.从能量转换方面讨论惯性环节与振荡环节的阶跃响应特点。17传递函数。18.系统稳定性。19.试说明增设比例加积分调节器后,对闭环控制系统的动、静态性能的影响。20.最小相位系统和非最小相位系统。21.说明开环控制系统和闭环控制系统的优缺点。22.奈奎斯特稳定性判据。23.为什么稳定的调速系统的前向通道中含有积分环节能实现无静差控制。24.什么叫系统校正。25.为什么在位置随动系统中,转速负反馈会得到普遍的应用?26.时域分析中常用的性能指标有哪些?27.幅频特性和相频特性。28.频域分析中如何来表征系统的稳定程度。29.经典控制理论的数学模型有几种形式?写出时域中数学模型的通式。30.在经典控制理论中,系统的数学模型有几种形式。31.有源校正网路和无源校正网路有什么不同特点,在实现校正规律时其作用是否相同?第42页共42页 32.试举出能够实现超前和迟后校正的元件,并从原理上说明这些元件所起的作用。33.一阶无差系统加入加速度信号时能否工作,为什么?在什么情况下能工作。34.为什么一阶无差系统加入速度反馈校正后能够改善系统的动态特性,用物理概念来解释。35.二阶无差系统加入微分反馈后对系统的无差度和时间常数有什么影响?36.有差系统加入微分反馈后对系统的无差度、时间常数和开环放大倍数有什么影响?37.有哪些元件可作为速度反馈用,试举例说明。38.要实现比例加微分校正作用,应采用什么样的反馈校正元件,其传递函数如何?39.比例加积分控制规律,能否有反馈校正来实现?40.设有一系统其超调量σ%=20%,调整时间t=0.5秒,求系统的相位裕度γ和剪切频率ω。41.设原系统开环传递函数G(s)=,要求校正后系统的复数主导极点具有阻尼比ζ=0.75。试用根轨迹法求K=15时的串联超前校正装置。42.设原系统开环传递函数G(s)=,要求校正后系统的相位裕度γ=65°,幅值裕度K=6分贝。试求串联超前校正装置。第42页共42页 第四部分:建模题1.下图为热水器电加热器。为了保持希望的温度,由温控开关接通或断开电加热器的电源。在使用热水时,水箱中流出热水并补充冷水。试画出这一闭环系统的原理方块图,若要改变所需温度时,定性地说明应怎样改变和操作。2.试说明上图所述系统,当水箱向外放热水和向里补充冷水时,系统应如何工作并画出对应的系统方块图。3.机械系统如下图所示,其中,外力f(t)为系统的输入,位移x(t)为系统的输出,m为小车质量,k为弹簧的弹性系数,B为阻尼器的阻尼系数,试求系统的传递函数(小车与地面的摩擦不计)4.下图是手控调压系统。当发电机的负载改变或发电机的转速变化时,发电机的端电压就要随之波动。为了保持端电压的恒定,需不断调节电阻RJ,以改变激磁电流If第42页共42页 ,使端电压保持不变,这样做很不方便,现将其改成自动调压系统。试画出系统原理图并标出各点应具有的正、负号。5.下图为一电动机速度控制系统原理图。在这个图中除速度反馈外又增加了一个电流反馈,以补偿负载变化的影响。试标出各点信号的正、负号并画出方块图。6.今测得最小相位系统渐近对数幅频特性曲线如下图所示,试求其传递函数G(S)的表达式。7.下图(a)与(b)均为自动调压系统。现在假设空载时(a)与(b)的发电机的端电压相同均为110伏。试问带上负载后(a)与(b)哪个能保持110伏电压不变,哪个电压要低于110伏,其道理何在?第42页共42页 8.某PID调节器的对数幅频特性如下图所示,求传递函数。9.如图所示,以uSC(t)为输出量,以uSr(t)为输入量的系统,试求出其传递函数。并指出它属于哪些典型环节组成?10.机械系统如图所示,其中,A点的位移X1(t)为系统的输入,位移X2(t)为系统的输出,K1、K2分别为两弹簧的弹性系数,B为阻尼器的阻尼系数,试求系统的传递函数。11.下图为一随动系统。当控制电位器的滑臂转角Φ1与反馈电位器的滑臂转角Φ2不同时,则有Uθ送入放大器,其输出电压UD第42页共42页 加到执行电动机的电枢两端,电机带动负载和滑臂一起转动直到反馈电位器滑臂位置与控制电位器滑臂位置一致时,即Φ2=Φ1时才停止。试将这个系统绘成方块图,并说明该系统的控制量,被控制量和被控制对象是什么?12.今测得最小相位系统渐近对数幅频特性曲线如下图所示,试求其传递函数G(S)的表达式。13.下图所示为二级RC电路网络图。已知ui(t)为该网络的输入,uo(t)为该网络的输出,i1(t)、i2(t)、ua(t)为中间变量。⑴试画出以ui(t)为输入,uo(t)为输出的系统的动态结构图;⑵根据画出的系统结构图,求出系统的传递函数。14.弹簧-阻尼系统如右图所示,其中K1、K2为弹簧弹性系统,B1、B2第42页共42页 为粘性阻尼系数。若位移x(t)为输入量,位移y(t)为输出量。试求该系统的传递函数。y(t)B1x(t)K1K2B215.下图为一温度控制系统。试分析这个系统的自动调温过程并说明这个系统的输出量和干扰量是什么?16.已知某单位负反馈系统为最小相位系统,其对数幅频特性曲线的渐近线如图所示,试求其开环传递函数G(s)的表达式(其中阻尼比ξ=1/2)。dBL(ω)200dB/dec-20dB/dec0dB/dec-40dB/dec第42页共42页 0ω(rad/s)0.1251017.如下图为一机械系统(小车的质量为m,弹簧的弹性系数为K,不计小车与地面的摩擦),若以冲击力F(t)为输入量,小车位移x(t)为输出量。①求此系统的传递函数;②当F(t)为一单位脉冲函数δ(t)时,求小车的位移x(t)=?18.某单位负反馈系统(设为最小相位系统)的开环对数幅频特性曲线渐近线如下,求该系统的开环传递函数。19.某单位负反馈系统(设为最小相位系统)的开环对数幅频特性曲线渐近线如下,求该系统的开环传递函数。第42页共42页 20.图1-13是一晶体管稳压电源。试将其画成方块图并说明在该电源里哪些元件起着测量、放大、执行的作用以及系统里的干扰量和给定量是什么。21.图1-14是电阻加热炉温自动控制系统。电阻丝电源的通断由接触式水银温度计控制。水银温度计的两个触点a和b接在常闭继电器的线圈电路中,它将随着水银柱的升降而接通或断开,从而控制继电器的触点K,把电阻丝的电源接通或断开,以达到自动调温的目的。试画出这个系统的方块图并与15题的温控系统比较,说明两者有何区别。第42页共42页 22.设计一个以电压为指令的内燃机车速度控制系统,并说明系统的工作过程。23.求下述函数的拉氏变换f(t)=1/a2(a2a)并求当a→0时F(s)的极限值。24.试列写右图所示机械系统的运动方程。25.试列写右图所示机械系统的运动方程。26.列写图2-13所示系统的输出电压u2与输入为电动机转速间的微分方程;Ks是隔离放大器。(其中C>>C1;C1>>C2)第42页共42页 27.下图所示电路,起始处于稳太,在t=0时刻开关断开。试求电感L两端电压对t的函数关系,并画出大致图形和用初值定理和终值定理演算。28.试列写右图所示发电机的电枢电压与激磁电压间的微分方程。(忽略发电机电感)。29.试画出以电机转速为输出,以干扰力矩为输入的电动机结构图,并求其传递函数。第五部分:稳定性分析题第42页共42页 1.利用劳斯稳定判据,确定下图所示系统的稳定性。2.利用劳斯稳定判据,确定下图所示系统的稳定性。3.下图所示潜艇潜水深度控制系统方块图。试应用劳斯稳定判据分析该系统的稳定性。4.已知高阶系统的特征方程为s6+2s5+8s4+12s3+20s2+16s+16=0试求特征根。5.为使具有特征方程D(S)=S3+dS2+(d+3)S+7=0的系统稳定,求d的取值范围。6.某典型二阶系统的开环传递函数为G(S)=请应用对数稳定判据分析当K增加时,此系统稳定性如何变化。7.某系统的结构图如下图所示,求该系统稳定时K的取值范围。第42页共42页 8.已知单位负反馈系统的开环传递函数为试求当K为多少时,闭环系统稳定。9.设单位反馈系统的开环传递函数为G(s)=(as+1)/s2,试确定使相位裕量γ=+450时的a值(a>0)。第六部分:结构图简化题1.用等效变换规则化简如下动态结构图:2.简化下面框图,求出C(S)=?3.用等效变换规则化简如下动态结构图:第42页共42页 4.基于方框图简化法则,求取系统传递函数φ(s)=XO(s)/Xi(s)。G1(s)G2(s)G3(s)H(s)Xi(s)XO(s)+———++5.求右图的输出信号C(s)。6.求下图的输出信号C(s)。第42页共42页 7.试求下图所示系统的传递函数C(s)/R(s)。8.试求下图所示系统的传递函数C(s)/R(s)。9.试求下图所示系统的传递函数C(s)/R(s)。10.试求下图所示系统的传递函数C(s)/R(s)。第42页共42页 11.试求下图所示系统的传递函数C(s)/R(s)。12.简化下列方块图求其传递函数。13.简化下列方块图求其传递函数。第七部分:时域分析题第42页共42页 1.已知系统的输出与输入信号之间的关系用下式描述:c(t)=5r(t-3),试求在单位阶跃函数作用下系统的输出特性。2.系统如图所示,r(t)=1(t)为单位阶跃函数,试求:①系统的阻尼比ζ和无阻尼自然频率ωn ;②动态性能指标:超调量MP和调节时间tS(δ=5)3.下图所示为飞行器控制系统方块图。已知参数:KA=16,q=4及KK=4。试求取:(1)该系统的传递函数C(s)/R(s)。(2)该系统的阻尼比ξ及无阻尼自振频率ωn(3)反应单位阶跃函数过渡过程的超调量、峰值时间及过渡过程时间。4.下图为仿型机床位置随动系统方块图。试求该系统的:(1)阻尼比ξ及无阻尼自振率ωn。(2)反应单位阶跃函数过渡过程的超调量σ、峰值时间tp、过渡过程时间ts及振荡次数N。第42页共42页 5.试求取图3-18所示控制系统当K=10秒-1及TM=0.1秒时:(1)阻尼比ξ及无阻尼自振率ωn。(2)反应单位阶跃函数过渡过程的超调量σ%及峰值时间tp。6.设系统如下图(a)所示。这个系统的阻尼比为0.137,无阻尼自振率为3.16弧度/秒。为了改善系统的相对稳定性,可以采用速度反馈。下图(b)表示了这种速度反馈系统。为了使系统的阻尼比等于0.5,试确定KH值。作出原系统和具有速度反馈系统的单位阶跃响应曲线。7.设系统的单位阶跃响应为c(t)=5(1-e-0.5t),求系统的过渡过程时间。8.下图系统的方块图。试求:(1)各系统的阻尼比ξ及无阻尼自振频率ωn。(2)第42页共42页 各系统的单位阶跃响应曲线及超调量、上升时间、峰值时间和过渡过程时间,并进行比较,说明系统结构、参数是如何影响过渡过程品质指标的?9.下图系统的方块图。试求:(1)各系统的阻尼比ξ及无阻尼自振频率ωn。(2)各系统的单位阶跃响应曲线及超调量、上升时间、峰值时间和过渡过程时间,并进行比较,说明系统结构、参数是如何影响过渡过程品质指标的?10.下图系统的方块图。试求:(1)各系统的阻尼比ξ及无阻尼自振频率ωn。(2)各系统的单位阶跃响应曲线及超调量、上升时间、峰值时间和过渡过程时间,并进行比较,说明系统结构、参数是如何影响过渡过程品质指标的?第42页共42页 11.已知单位负反馈系统的开环传递函数且初始条件为C(0)=-1,=0试求:系统在r(t)=1(t)作用下的输出响应。第八部分:频域分析题1.若系统的单位脉冲响应为,试求系统的频率特性。2.设单位反馈系统的开环传递函数为G(s)=,其中T=0.1(秒),K=5,试绘制开环对数频率特性和闭环频率特性,并求在ω=10()时,对应二个特性的二个相角及频带数值。3.设系统的前向环节传递函数为G(s)=K,其反馈环节传递函数为H(s)=(微分反馈),试绘制系统开环对数频率特性。4.设单位反馈系统的开环传递函数为G(s),试绘制系统的闭环对数频率特性,确定系统的谐振峰值M与谐振频率ω。5.某调速系统实验数据如表,试绘制系统的幅相频率特性及对数频率特性,并写出其等效传递函数,使误差不超过3分贝~6分贝。6.设系统开环传递函数为G(s)=,当τ=0.1秒与τ=0.2秒时,试确定系统稳定时K的最大值。第42页共42页 7.设系统开环传递函数为G(s)=,用M圆绘制单位反馈系统的闭环频率特性(可借助伯德图)。8.设系统开环传递函数为G(s)=,试绘制其幅相频率特性与对数频率特性。9.设系统的开环传递函数为G(s)=,若使系统的幅值裕度为20分贝,开环放大倍数K应为何值?此时相角裕度v为多少?10.设单位反馈系统开环传递函数为G(s)=试判别系统的稳定性,并求加入串联校正装置H(s)=后系统的稳定裕度。11.已知某单位负反馈控制系统的开环传递函数为G(S)=:①在下面半对数坐标纸上画出其渐近对数幅频特性;②由图解求取其幅值穿越频率ωc(近似值);③由公式求取相位裕量γ,并由此判断该系统的稳定性。第42页共42页 12.已知某单位负反馈控制系统的开环传递函数为G(S)=:①在下面半对数坐标纸上画出其渐近对数幅频特性;②由图解求取其幅值穿越频率ωc(近似值);③由公式求取相位裕量γ,并由此判断该系统的稳定性。第42页共42页 第九部分:稳态分析题1.下图所示为仪表随动系统方块图试求取:(1)r(t)=1(t)时的稳态误差(2)r(t)=10t时的稳态误差(3)r(t)=4+6t+3t2时的稳态误差2.试求取图4-24所示的控制系统在下列控制信号作用下的稳态误差。(1)r(t)=10t(2)r(t)=4+6t+3t2(3)r(t)=4+6t+3t2+1.8t33.在输入信号r(t)=1(t)及r(t)=5t的分别作用下,试求图4-25所示系统的稳态误差。第42页共42页 4.设控制系统如下图所示。控制信号r(t)=1(弧度)。试分别确定当KH为1和0.1时,系统输出量的位置误差。5.设速度控制如下图所示。输入信号r(t)和扰动信号f(t)都是单位斜坡函数。为了消除系统的稳态误差,使斜坡输入信号通过比例-微分元件后再进入系统。试计算Kd=0时的稳态误差,然后适当选择Kd值,使系统稳态输出c(t)与希望输出r(t)之间不存在稳态误差。6.下第42页共42页 图所示是一个角速度控制系统,这个系统的输出部分承受着力矩的干扰。在这个图中,Ωr(s),Ωc(s),T(s)和F(s)分别是参考角速度、输出角速度、转动力矩和干扰力矩的拉变换。在没有干扰力矩时,输出角速度等于参考角速度。假设参考输入为零时,即Ωr(s)=0,研究这个系统对于单位阶跃干扰力矩的响应。7.在上题所设的系统中,要求它尽最大可能地消除由于力矩干扰所引起的角速度误差。问是否有可能抵消稳态时的干扰力矩的影响,以使系统在输出部分作用有常量干扰时不引起稳态时的角速度变化?8.已知角度随动系统的开环对数频率特性,分别是I,II,III,示于图4-31中。估算该三个闭环系统的下述指标:(1)开环位置放大倍数,开环速度放大倍数,开环加速度放大倍数。(2)误差系数假定输入信号r1(t)=7(度),r2(t)=5t(度),r3(t)=7+5t+8t2(度),试求在上述输入信号作用下,该系统的稳态误差角(即t→∞时的角度误差)。9.已知一个具有单位反馈的自动跟踪系统,其开环系统的放大倍数Kv=6001/秒,系统最大跟踪速度ωmax=24°/秒,求系统在最大跟踪速度下的稳态误差。10.第42页共42页 设有单位反馈系统,它反应单位理想脉冲函数时的被控制信号和偏差信号分别为k(t)和kε(t)(即系统在不同点处的脉冲过渡函数)。试通过上列的脉冲过渡函数求取系统的误差系数。11.求下列系统的跟随稳态误差essdC(S)R(S)=12.求下列系统的跟随稳态误差essrC(S)R(S)=第十部分:校正分析题1.在下图所示系统下加入串联校正后,系统的σ%=15%,且该系统在阶跃干扰信号n(t)作用下其稳态误差应小于0.15单位。试确定串联校正参数。2.设单位反馈系统的传递函数G(S)=,要求校正后系统的相位裕度γ=40°2°,幅值裕度K=10分贝,剪切频率第42页共42页 ω≧1,且开环增益保持不变。试求串联后校正参数。3.现有图7-51所示系统,其中G(s)=要求校正后系统的谐振峰值M=1.4,谐振频率ω=30。试求串联校正装置。第42页共42页'