- 6.04 MB
- 2022-04-29 14:11:17 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'第九章习题解答9-1两个小球都带正电,总共带有电荷,如果当两小球相距2.0m时,任一球受另一球的斥力为1.0N.试求总电荷在两球上是如何分配的?分析:运用库仑定律求解。解:如图所示,设两小球分别带电q1,q2则有题9-1解图q1+q2=5.0×10-5C①由题意,由库仑定律得:②由①②联立得:9-2两根6.0×10-2m长的丝线由一点挂下,每根丝线的下端都系着一个质量为0.5×10-3kg的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。求每一个小球的电量。分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。解:设两小球带电q1=q2=q,小球受力如图所示题9-2解图①②联立①②得:③其中代入③式,即:q=1.01×10-7C9-3电场中某一点的场强定义为,若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.54
因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷q0所受力与q0成正比,故是与q0无关的。9-4直角三角形ABC如题图9-4所示,AB为斜边,A点上有一点荷,B点上有一点电荷,已知BC=0.04m,AC=0.03m,求C点电场强度的大小和方向(cos37°≈0.8,sin37°≈0.6).分析:运用点电荷场强公式及场强叠加原理求解。解:如题图9-4所示C点的电场强度为题9-4解图C方向为:即方向与BC边成33.7°。9-5两个点电荷的间距为0.1m,求距离它们都是0.1m处的电场强度。分析:运用点电荷场强公式及场强叠加原理求解。题9-5解图解:如图所示:,沿x、y轴分解:∴9-6有一边长为a的如题图9-6所示的正六角形,四个顶点都放有电荷q,两个顶点放有电荷-q。试计算图中在六角形中心O点处的场强。分析:运用点电荷场强公式及场强叠加原理求解。54
解:如图所示.设q1=q2=…=q6=q,各点电荷q在O点产生的电场强度大小均为:各电场方向如图所示,由图可知与抵消.据矢量合成,按余弦定理有:方向垂直向下.题9-6解图qqqq-q-q题图9-6O.9-7电荷以线密度λ均匀地分布在长为l的直线上,求带电直线的中垂线上与带电直线相距为R的点的场强。分析:将带电直线无穷分割,取电荷元,运用点电荷场强公式表示电荷元的场强,再积分求解。注意:先电荷元的场强矢量分解后积分,并利用场强对称性。解:如图建立坐标,带电线上任一电荷元在P点产生的场强为:题9-8解图题9-7解图根据坐标对称性分析,E的方向是y轴的方向9-8两个点电荷q1和q2相距为l,若(1)两电荷同号;(2)两电荷异号,求电荷连线上电场强度为零的点的位置.分析:运用点电荷场强公式及场强叠加原理求解。解:如图所示建立坐标系,取q1为坐标原点,指向q2的方向为x轴正方向.(1)两电荷同号.场强为零的点只可能在q1、q2之间,设距q1为x的A点.54
据题意:E1=E2即:∴(2)两电荷异号.场强为零的点在q1q2连线的延长线或反向延长线上,即E1=E2解之得:9-9如题图9-9所示,长l=0.15m的细直棒AB上,均匀地分布着线密度的正电荷,试求:(1)在细棒的延长线上,距棒近端d1=0.05m处P点的场强;(2)在细线的垂直平分线上与细棒相距d2=0.05m的Q点处的场强;(3)在细棒的一侧,与棒垂直距离为d2=0.05m,垂足距棒一端为d3=0.10m的S点处的场强.分析:将均匀带电细棒分割成无数个电荷元,每个电荷元在考察点产生的场强可用点电荷场强公式表示,然后利用场强叠加原理积分求解,便可求出带电细棒在考察点产生的总场强。注意:先电荷元的场强矢量分解后积分,并利用场强对称性。题9-9解图(1)题图9-9解:(1)以P点为坐标原点,建立如图(1)所示坐标系,将细棒分成许多线元dy.其所带电量为,其在P点的场强为,则∴方向沿Y轴负方向(2)建立如图所示的坐标系,将细棒分成许多线元dy.其所带电量为。它在Q点的场强的大小为:dE在x、y轴的投影为:54
由图可见:,∴由于对称性,dEy分量可抵消,则又∵θ1=π-θ2∴方向沿X轴正方向题9-9解图(3)题9-9解图(2)(3)在细棒一侧的S点处的场强。建立如图(3)所示的坐标系,分析如(2)则:其中:;。方向:与x轴的夹角:9-10无限长均匀带电直线,电荷线密度为λ,被折成直角的两部分.试求如题图9-10所示的P点和P′点的电场强度.54
分析:运用均匀带电细棒附近的场强公式及场强叠加原理求解。题图9-10解:以P点为坐标原点,建立如题9-10解图(1)所示坐标系均匀带电细棒的场强:在P点:,∴竖直棒在P点的场强为:题9-10解图(1)x水平棒在P点的场强为:∴在P点的合场强:即:方向与x轴正方向成45°.同理以P′点为坐标原点,建立如图题9-10解图(2)坐标:在P′点:,∴竖直棒在P′点的场强为:题9-10解图(2)x水平棒在P′点的场强为:∴在P′点的合场强为:即:,方向与x轴成-135°.54
9-11无限长均匀带电棒上的线电荷密度为,上的线电荷密度为,与平行,在与,垂直的平面上有一点P,它们之间的距离如题图9-11所示,求P点的电场强度。分析:运用无限长均匀带电细棒的场强公式及场强叠加原理求解。解:在P点产生的场强为:题图9-11在P点产生的场强大小为:方向如题9-11解图所示。把写成分量形式为:∴在P点产生的合场强为:题9-11解图9-12一细棒被弯成半径为R的半圆形,其上部均匀分布有电荷+Q,下部均匀分布电荷-Q.如题图9-12所示,求圆心O点处的电场强度。题9-12解图54
题图9-12分析:微分取电荷元,运用点电荷场强公式及场强叠加原理积分求解。将带电半圆环分割成无数个电荷元,运用点电荷场强公式表示电荷元场强。将电荷元电场进行矢量分解,再进行对称性分析,然后积分求解。解:把圆环分成无限多线元,所带电量为,产生的场强为。则的大小为:把分解成dEx和dEy,则:由于+Q、-Q带电量的对称性,x轴上的分量相互抵消,则:∴圆环在O点产生的场强为:题图9-139-13两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,求:(1)图中三个区域的场强,,的表达式;(2)若б=4.43×10-6C·m-2,那么,,,各多大?分析:首先确定场强正方向,然后利用无限大均匀带电平板场强及场强叠加原理求解。解:(1)无限大均匀带电平板周围一点的场强大小为:∴在Ⅰ区域:Ⅱ区域:Ⅲ区域:(2)若σ=4.43×10-6C·m-2则54
9-14边长为a的立方盒子的六个面分别平行于xOy,yOz和xOz平面,盒子的一角在坐标原点处,在此区域有匀强电场,场强,求通过各面的电通量。分析:运用电通量定义求解,注意对于闭合曲面,外法线方向为正。解:即平行于xOy平面的两平面的电通量为0;平行于yOz平面的两平面的电通量为±200a2N·m2·C-1;平行于xOz平面的两平面的电通量为±300a2N·m2·C-1。题9-16解图题9-15解图9-15一均匀带电半圆环,半径为R,电量为+Q,求环心处的电势。54
分析:微分取电荷元,运用点电荷电势公式及电势叠加原理积分求解。将带电半圆环分割成无数个电荷元,根据点电荷电势公式表示电荷元的电势,再利用电势叠加原理求解。解:把半圆环无穷分割,取线元,其带电量为,则其在圆心O的电势为:∴整个半圆环在环心O点处的电势为:9-16一面电荷密度为б的无限大均匀带电平面,若以该平面处为电势零点,求带电平面周围的电势分布。分析:利用无限大均匀带电平面的场强公式及电势与电场强度的积分关系求解。解:无限大平面周围的场强分布为:取该平面电势为零,则周围任一点P的电势为:9-17如题图9-17所示,已知a=8×10-2m,b=6×10-2m,q1=3×10-8C,q2=-3×10-8C,D为q1,q2连线中点,求:(1)D点和B点的场强和电势;(2)A点和C点的电势;(3)将电量为2×10-9C的点电荷q0由A点移到C点,电场力所作的功;(4)将q0由B点移到D点,电场力所作的功。题图9-17题9-17解图分析:由点电荷的场强、电势的公式及叠加原理求场强和电势。静电力是保守力,保守力做功等于从初位置到末位置势能增量的负值。解:(1)建立如图题9-17解图所示坐标系:54
,方向如图示。,方向如图示。∴;方向平行于x轴.同理,UB=0.(2)(3)(4)∴9-18设在均匀电场中,场强与半径为R的半球面的轴相平行,试计算通过此半球面的电场强度通量?分析:如图所示,由高斯定理可知,穿过圆平面S1的电力线必通过半球面。解:在圆平面S1上:所以通过此半球面的电通量为:题9-19解图题9-18解图9-19两个带有等量异号电荷的无限大同轴圆柱面,半径分别为R1和R2(R2>R1).单位长度上的电量为λ,求离轴线为r处的电场强度:(1);(2);(3)分析:由于场为柱对称的,做同轴圆柱面,运用高斯定理求解。54
解:(1)在时,作如图所示同轴圆柱面为高斯面.由于场为柱对称的,所以通过侧面的电通量为,通过上下底面的电通量为零.据高斯定理,因为此高斯面没有包围电荷,所以有:(2)对,类似(1)作高斯面,有:题9-20解图故得:(3)对,作类似高斯面,有:故得:E=0。9-20静电场中a点的电势为300V,b点电势为-10V.如把5×10-8C的电荷从b点移到a点,试求电场力作的功?分析:电场力作功等于电势能增量的负值。解:依题意可以有如图的示意图:把正电荷由a点移到b点时电场力作功反之,当正电荷从b点移到a点时,电场力作功:负功表示当正电荷向低电势向高电势移动时,它要克服电场力作功,从而增加了它的电势能。9-21在半径为R1和R2的两个同心球面上分别均匀带电q1和q2,求在,,三个区域内的电势分布。分析:由于场为球对称的,做同心球面,利用高斯定理求出场强。再利用电势与场强的积分关系求电势。注意:积分路径上的场强是分段函数。题9-21解图解:利用高斯定理求出:54
电势的分布:54
第十章习题解答10-1如题图10-1所示,三块平行的金属板A,B和C,面积均为200cm2,A与B相距4mm,A与C相距2mm,B和C两板均接地,若A板所带电量Q=3.0×10-7C,忽略边缘效应,求:(1)B和C上的感应电荷?(2)A板的电势(设地面电势为零)。题10-1解图题图10-1分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B、C两板都接地,所以有。解:(1)设B、C板上的电荷分别为、。因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。作如图中虚线所示的圆柱形高斯面。因导体达到静电平衡后,内部场强为零,故由高斯定理得:即①又因为:而:∴于是:两边乘以面积S可得:即:②联立①②求得:(2)10-2如题图10-2所示,平行板电容器充电后,A和B极板上的面电荷密度分别为+б和-б,设P为两极板间任意一点,略去边缘效应,求:54
(1)A,B板上的电荷分别在P点产生的场强EA,EB;(2)A,B板上的电荷在P点产生的合场强E;(3)拿走B板后P点处的场强E′。分析:运用无限大均匀带电平板在空间产生的场强表达式及场强叠加原理求解。解:(1)A、B两板可视为无限大平板.所以A、B板上的电何在P点产生的场强分别为:题图10-2,方向为:垂直于A板由A指向B板,方向与相同.(2),方向于相同(3)拿走B板后:,方向垂直A板指向无限远处.10-3电量为q的点电荷处导体球壳的中心,球壳的内、外半径分别为R1和R2,求场强和电势的分布。分析:由场强分布的对称性,利用高斯定理求出各区域场强分布。再应用电势与场强的积分关系求电势,注意积分要分段进行。解:由静电感应在球壳的内表面上感应出的电量,外表面上感应出q的电量.题10-3解图所以由高斯定理求得各区域的场强分布为:即:,,54
,综上可知:10-4半径为R1的导体球,带有电量q;球外有内、外半径分别为R2,R3的同心导体球壳,球壳带有电量Q。(1)求导体球和球壳的电势U1,U2;(2)若球壳接地,求U1,U2;(3)若导体球接地(设球壳离地面很远),求U1,U2。分析:由场强分布的对称性,利用高斯定理求出各区域场强分布;再由电势定义求电势。接地导体电势为零,电荷重新分布达到新的静电平衡,电势分布发生变化。解:如图题10-4解图(a)所示,当导体达到静电平衡时,q分布在导体球的表面上.由于静电感应在外球壳的内表面上感应出电量.外表面上感应出电量,则球壳外表面上共带电荷.(1)由于场的对称性.由高斯定理求得各区域的场强分布为:题10-4解图(a)E的方向均沿经向向外.取无限远处电势为零,则由电势的定义可得:内球体内任一场点p1的电势为外球壳体内任一场点p2的电势为:54
题10-4解图(b)(2)若外球壳接地.球壳外表面的电荷为零,等量异号电荷分布在球体表面和球壳内表面上,此时电场只分布在的空间,如图题10-4解图(b)所示.由于外球壳则内球体内任一点P1的电势U1为:(3)当内球接地时,内球的电势,但无限远处的电势也为零,这就要求外球壳所带电量在内外表面上重新分配,使球壳外的电场沿着经向指向无限远处,球壳内的电场经向指向球心处;因此,内球必然带负电荷。因为内球接地,随着它上面正电荷的减少,球壳内表面上的负电荷也相应减少;当内球上正电荷全部消失时,球壳内表面上的负电荷全部消失完;但就球壳而言,仍带有电量+Q。由于静电感应,在内球和大地这一导体,系统中便会感应出等量的负电荷-Q,此负电荷(-Q)的一部分(设为-q′)均匀分布在内球表面上。球壳内表面上将出现等量的正电荷(+q′)与之平衡.因此,在达到静电平衡后,内球带电荷-q′,球壳内表面带电量+q′,外表面上带电量(Q-q′),如图所示.由高斯定理可知各区域的场强分布为:题10-4解图(c)球壳上任一场点P2相对于无限远处和相对于接地内球的电势,应用电势定义分别计算,可得:联立上述两式,求得:54
将代入U2的表达式中可得:,,10-5三个半径分别为R1,R2,R3(R1>1,B=μ0H。所以a代表铁磁质的B~H关系曲线.b代表顺磁质的B~H关系曲线.c代表抗磁质的B~H关系曲线.HabcBO题图12-112-2螺绕环中心周长,环上线圈匝数N=200匝,线圈中通有电流。(1)求管内的磁感应强度和磁场强度;(2)若管内充满相对磁导率的磁性物质,则管内的和是多少?(3)磁性物质内由导线中电流产生的和由磁化电流产生的各是多少?分析:电流对称分布,可应用安培环路定理求解。且,。解:(1)管内磁场强度磁感应强度(2)管内充满磁介质后(3)磁介质内由导线中电流产生的则12-3一铁制的螺绕环,其平均圆周长为30cm,截面积为1cm2,在环上均匀绕以300匝导线,当线圈内的电流为0.032A时,环内的磁通量为.试计算(1)环内的磁通量密度;(2)环圆截面中心的磁场强度;(3)磁化面电流;(4)环内材料的磁导率、相对磁导率及磁化率;(5)环芯内的磁化强度.分析:可应用介质中安培环路定理求磁场强度。由磁场强度定义式和求解磁化面电流和磁化强度。由54
和相对磁导率及磁化率定义求解解:(1)环内磁通密度。(2)电流对称分布,可应用介质中安培环路定理求解,取以螺绕环中心同心的圆弧(在螺绕环截面内)为积分路径,则有即,。(3)由磁场强度定义和,得磁化面电流线密度(由比较得)。而磁化面电流:(4)(5)12-4在螺绕环的导线内通有电流20A,环上所绕线圈共400匝,环的平均周长是40cm,利用冲击电流计测得环内磁感应强度是1.0T。计算环的截面中心处的(1)磁场强度;(2)磁化强度;(3)相对磁导率。分析:运用介质中安培环路定理求磁场强度;磁场强度定义求解磁化强度。由求磁化面电流。解:(1)由介质中安培环路定理可求得(2)磁化强度大小为(3)磁化面电流相对磁导率。54
12-5如题12-5图所示,一同轴长电缆由两导体组成,内层是半径为的圆柱形导体,外层是内、外半径分别为和的圆筒,两导体上电流等值反向,均匀分布在横截面上,导体磁导率均为,两导体中间充满不导电的磁导率为的均匀介质,求各区域中磁感应强度的分布。分析:应用介质中安培环路定理求解。解:由于电流对称分布,场也对称分布,可应用安培环路定理求解。如图以轴线上一点为圆心,r为半径作一安培环路,环路所在平面垂直于电流方向,且与导体中电流方向成右手螺旋关系。(1)当时,由,得:(2)当时,由,得(3)当时,由,得:(4)当时,题12-5图54
第十三章习题解答题图13-1题图13-213-1如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为r1,r2。已知两导线中电流都为,其中I0和为常数,t为时间。导线框长为a宽为b,求导线框中的感应电动势。分析:当导线中电流I随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律计算感应电动势,其中磁通量,B为两导线产生的磁场的叠加。解:无限长直电流激发的磁感应强度为。取坐标Ox垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。取回路的绕行正方向为顺时针。由场强的叠加原理可得x处的磁感应强度大小通过微分面积的磁通量为通过矩形线圈的磁通量为感生电动势时,回路中感应电动势的实际方向为顺时针;时,回路中感应电动势的实际方向为逆时针。13-2如题图13-2所示,有一半径为r=10cm的多匝圆形线圈,匝数N=100,置于均匀磁场中(B=0.5T)。圆形线圈可绕通过圆心的轴O1O2转动,转速n=600rev/min。求圆线圈自图示的初始位置转过时,(1)线圈中的瞬时电流值(线圈的电阻为R=100,不计自感);(2)感应电流在圆心处产生的磁感应强度。分析:应用法拉第电磁感应定律求解感应电动势。应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度。解:(1)圆形线圈转动的角速度rad/s。设t54
=0时圆形线圈处在图示位置,取顺时针方向为回路绕行的正方向。则t时刻通过该回路的全磁通电动势感应电流将圆线圈自图示的初始位置转过时,,代入已知数值得:(2)感应电流在圆心处产生的磁感应强度的大小为的方向与均匀外磁场的方向垂直。题图13-3题图13-413-3均匀磁场被限制在半径R=10cm的无限长圆柱形空间内,方向垂直纸面向里。取一固定的等腰梯形回路abcd,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示。设磁场以的匀速率增加,已知,,求等腰梯形回路abcd感生电动势的大小和方向。分析:求整个回路中的电动势,采用法拉第电磁感应定律,本题的关键是确定回路的磁通量。解:设顺时针方向为等腰梯形回路绕行的正方向.则t时刻通过该回路的磁通量,其中S为等腰梯形abcd中存在磁场部分的面积,其值为电动势代入已知数值“–”说明,电动势的实际方向为逆时针,即沿adcba绕向。用楞次定律也可直接判断电动势的方向为逆时针绕向。13-4如题图13-4所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:(1)在任意时刻t通过矩形线圈的磁通量;(2)在图示位置时矩形线圈中的电动势。分析:线圈运动,穿过线圈的磁通量改变,线圈中有感应电动势产生,求出t时刻穿过线圈的磁通量,再由法拉第电磁感应定律求感应电动势。解:(1)设线圈回路的绕行方向为顺时针。由于载流长直导线激发磁场为非均匀分布,。因此,必须由积分求得t时刻通过回路的磁通量。取坐标Ox垂直于直导线,坐标原点取在直导线的位置,坐标正方向为水平向右,则在任意时刻54
t通过矩形线圈的磁通量为(2)在图示位置时矩形圈中的感应电动势电动势的方向沿顺时针绕向。13-5如题图13-5所示为水平面内的两条平行长直裸导线LM与,其间距离为,其左端与电动势为的电源连接.匀强磁场垂直于图面向里,一段直裸导线ab横嵌在平行导线间(并可保持在导线上做无摩擦地滑动),电路接通,由于磁场力的作用,ab从静止开始向右运动起来。求:(1)ab达到的最大速度;(2)ab到最大速度时通过电源的电流I。分析:本题是包含电磁感应、磁场对电流的作用和全电路欧姆定律的综合性问题。当接通电源后,ab中产生电流。该通电导线受安培力的作用而向右加速运动,由于ab向右运动使穿过回路的磁通量逐渐增加,在回路中产生感应电流,从而使回路中电流减小,当回路中电流为零时,直导线ab不受安培力作用,此时ab达到最大速度。解:(1)电路接通,由于磁场力的作用,ab从静止开始向右运动起来。设ab运动的速度为v,则此时直导线ab所产生的动生电动势,方向由b指向a.由全电路欧姆定理可得此时电路中的电流为ab达到的最大速度时,直导线ab不受到磁场力的作用,此时。所以ab达到的最大速度为(2)ab达到的最大速度时,直导线ab不受到磁场力的作用,此时通过电路的电流i=0。所以通过电源的电流也等于零。题图13-5题图13-613-6如题图13-6所示,一根长为L的金属细杆ab绕竖直轴O1O2以角速度在水平面内旋转,O1O2在离细杆a端L/5处。若已知均匀磁场平行于O1O2轴。求ab两端间的电势差Ua-Ub.分析:由动生电动势表达式先求出每段的电动势,再将ab的电动势看成是oa和ob二者电动势的代数和,ab两端的电势差大小即为ab间的动生电动势大小。求每段的电动势时,由于各处的运动速度不同,因此要将各段微分成线元,先由动生电动势公式计算线元的两端的动生电动势,再积分计算整段的动生电动势。解:设金属细杆ab与竖直轴O1O2交于点O,将ab两端间的动生电动势看成ao与ob两段动生电动势的串联。取ob54
方向为导线的正方向,在铜棒上取极小的一段线元,方向为ob方向。线元运动的速度大小为。由于互相垂直。所以两端的动生电动势ob的动生电动势为动生电动势的方向由b指向O。同理oa的动生电动势为动生电动势的方向由a指向O。所以ab两端间的的动生电动势为动生电动势的方向由a指向了b;a端带负电,b端带正电。ab两端间的电势差b端电势高于a端。题图13-7题图13-813-7如题图13-7所示,导线L以角速度ω绕其端点O旋转,导线L与电流I在共同的平面内,O点到长直电流I的距离为a,且a>L,求导线L在与水平方向成θ角时的动生电动势的大小和方向。分析:载流长直导线产生磁场,导线L绕O旋转切割磁力线。由于切割是不均匀的磁场,而且导体各处的运动速度不同,所以要微分运动导线,先由动生电动势公式计算线元的两端的动生电动势,再积分计算整段的总动生电动势。解:取OP方向为导线的正方向,在导线OP上某处取极小的一段线元,方向为OP方向。线元运动的速度大小为。由于互相垂直。所以两端的动生电动势将载流长直导线在该处激发磁场代入,积分得导线L在与水平方向线成θ角时的动生电动势为:动生电动势的方向由P指向O。13-8如题图13-8所示半径为r的长直密绕空心螺线管,单位长度的绕线匝数为n,所加交变电流为I=I0sinωt54
。今在管的垂直平面上放置一半径为2r,电阻为R的导线环,其圆心恰好在螺线管轴线上。(1)计算导线环上涡旋电场E的值且说明其方向;(2)计算导线上的感应电流;(3)计算导线环与螺线管间的互感系数M。分析:电流变化,螺线管内部磁场也变化,由磁场的柱对称性可知,由变化磁场所激发的感生电场也具有相应的对称性,感生电场线是一系列的同心圆。根据感生电场的环路定理,可求出感生电场强度。由法拉第电磁感应定律及欧姆定律求感应电流,由互感系数定义式求互感系数。解:(1)以半径为2r的导线环为闭合回路L,取回路L的绕行正方向与B呈右旋关系,自上向下看为逆时针方向。由于长直螺线管只在管内产生均匀磁场,导线环上某点涡旋电场E方向沿导线环的切向。所以由规律可得导线环上涡旋电场E的值为若cosωt>0,E电场线的实际走向与回路L的绕行正方向相反,自上向下看为顺时针方向;若cosωt<0,E电场线的实际走向与回路L的绕行正方向相同,自上向下看为逆时针方向。(2)导线上的感应电流(3)导线环与螺线管间的互感系数为13-9电子感应加速器中的磁场在直径为0.50m的圆柱形区域内是匀强的,若磁场的变化率为1.0×10-2T/S。试计算离开中心距离为0.10m、0.50m、1.0m处各点的感生电场。分析:由磁场的柱对称性可知,变化磁场所激发的感生电场分布也具有相应的对称性,即感生电场的电场线是一系列以圆柱体中心为轴的同心圆。根据可求出感生电场强度。解:以圆柱形的区域的中心到各点的距离为半径,作闭合回路L。取回路L的绕行正方向与B呈右旋关系,为顺时针方向。由于回路上各点处的感生电场E沿L的切线方向。所以由规律可得54
得式中“-”说明:若,E的实际方向与假定方向相反,否则为一致。r=0.10m时,rR,r=1.10m时,r>R,13-10如题图13-10所示,一个限定在半径为R的圆柱体内的均匀磁场B以10-2T/s的恒定变化率减小。电子在磁场中A、O、C各点处时,它所获得的瞬时加速度(大小、方向)各为若干?设r=5.0cm。分析:根据对称性,由感生电场的环路定理求出感生电场强度,由感生电场力及牛顿第二定律求出瞬时加速度。题图13-10题图13-11解:以圆柱形区域的中心到各点的距离为半径,作闭合回路L。取回路L的绕行正方向与B呈右旋关系,由于回路上各点处的感生电场E沿L的切线方向。所以由规律可得(r
您可能关注的文档
- 《数控加工工艺》课后练习题答案.doc
- 《数控机床(专科必修)》2012年7月期末试题及答案.doc
- 《数控编程及操作》习题及答案.docx
- 《文学概论》自测题及参考答案.doc
- 《新时期教师职业道德修养》第二次考试复习题答案v2.doc
- 《新约古希腊语教程》练习答案.pdf
- 《新编中级日本语》课后练习.doc
- 《新编动力气象学》习题答案.pdf
- 《新编基础会计》习题及答案101110.doc
- 《新编大学物理》(上、下册)教材习题答案.doc
- 《新编大学物理》(下册)教材习题答案.doc
- 《新编日语同步辅导及随课拓展练习1》习题及答案(共两部分).doc
- 《新闻理论教程》何梓华(修订版)课后习题详解.pdf
- 《新闻理论研究》题库题目与答案.doc
- 《方剂学》习题含答案.doc
- 《施工组织与进度控制》习题集库(含答案).doc
- 《旅游英语》听力文本和练习答案.pdf
- 《无机化学》(下)习题答案.doc