• 566.27 KB
  • 2022-04-29 14:09:58 发布

《数值计算方法》 课后题 答案(曾金平)湖南大学.pdf

  • 71页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'习题一41.设x>0相对误差为2%,求x,x的相对误差。解:由自变量的误差对函数值引起误差的公式:Δ(())fxxδ(())fxf=≈"()()xδx得fx()fx()1(1)f()xx=时x11δδ()xx≈=()"()xxδ()*=2%1=%;x224(2)f()xx=时44xδδ()xx≈=()"()4()4*2%8%xxδ==4x2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。(1)x=12.1;(2)x=12.10;(3)x=12.100。解:由教材P关于xa=±aab"".bb"型数的有效数字的结论,易得上面三个数的有效912mn12数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.135221≈flfl((0.319710×+0.245610)0.1352)×+2=fl(0.344310×+0.1352)2=0.3457×10(2)31.97+(2.456+0.1352)21≈×fl(0.319710+×fl(0.245610))21=fl(0.319710×+0.259110)×2=0.3456×102易见31.97+2.456+0.1352=0.345612×10,故(2)的计算结果较精确。 4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?2Δ(())fxx解:设该正方形的边长为x,面积为f()xx=,由δ(())fxf=≈"()()xδxfx()fx()2δ(())()fxfxδδ(())fxx(())fx解得δ()x≈===0.5%xfx"()xxi225.下面计算y的公式哪个算得准确些?为什么?211−x2x2(1)已知x<<1,(A)y=−,(B)y=;121++xx(12)(1+x+x)211(2)已知x>>1,(A)y=,(B)yx=+−−x;11xxxx()++−xxx22sinx1cos2−x(3)已知x<<1,(A)y=,(B)y=;xx1(4)(A)y=−980,(B)y=98+0解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。故在设计算法时应尽量避免上述情况发生。(1)(A)中两个相近数相减,而(B)中避免了这种情况。故(B)算得准确些。(2)(B)中两个相近数相减,而(A)中避免了这种情况。故(A)算得准确些。2(3)(A)中sinx使得误差增大,而(B)中避免了这种情况发生。故(B)算得准确些。(4)(A)中两个相近数相减,而(B)中避免了这种情况。故(B)算得准确些。6.用消元法求解线性代数方程组1515⎧xx+=101012⎨⎩xx+=212假定使用十进制三位浮点数计算,问结果是否可靠?解:使用十进制三位浮点数计算该方程则方程组变为11616⎧⎪0.10010×+×=×xx0.100100.10010""""(1)12⎨111⎪⎩0.10010×+×=×xx0.100100.20010"""""(2)1216161(1)(-2)得0.10010×=×x0.10010,即x=0.10010×,把x的值代入(1)得x=0.000;2221 1把x的值代入(2)得x=×0.100102111⎧⎪x10.10010=×⎧⎪x10.10010=×解⎨不满足(2)式,解⎨不满足(1)式,故在十进制三位浮11⎪⎩x2=×0.00010⎪⎩x2=×0.10010点数解该方程用消元法计算结果不可靠。327.计算函数f()xxxx=−+−331和gx()=((x−+−=3)x3)x1在x2.19处的函数值(采用十进制三位浮点数计算)。哪个结果较正确?31111解:f(2.19)=0.480×10×0.219×10−3×0.480×10+0.657×10−1221=0.105×10−0.144×10+0.657×10−11=0.16710×11g(2.19)=((−0.81)×0.219×10+3)×0.219×10−1111=0.123×10×0.219×10−1=0.16910×11即fx()=×0.16710,gx()=×0.1691032而当x=2.19时x−+−331xx的精确值为1.6852,故gx()的算法较正确。8.按照公式计算下面的和值(取十进制三位浮点数计算):6111(1)∑i;(2)∑i。i=13i=6361111111解:(1)∑i=+++++23456=0.3330.1110.037+++++0.0120.0040.001i=13333333=0.48911111111(2)∑i=+++++65432=0.0010.0040.012+++++0.0370.1110.333i=63333333=0.4891π9.已知三角形面积Sa=bCsin,其中00.81860,fx"()=+>sinxxxcos0,x∈[0,2]∗所以函数f()x在()0,2上严格单调增且有唯一实根x。−4本题中求根使得误差不超过10,则由误差估计式b−a2−0−4|α−x|≤,所需迭代次数k满足<10,即取k≥13.28便可,因此取k=14。kk+1k+122用二分法计算结果列表如下:kakbkxkf(xk)0021-0.15851121.50.4962211.51.250.1862311.251.1250.015051411.1251.0625-0.071851.06251.1251.09375-0.0283561.093751.1251.109375-0.0066471.1093751.1251.11718750.00420881.1093751.11718751.11328125-0.00121691.113281251.11718751.1152343750.001496101.113281251.1152343751.11425781250.001398111.113281251.11425781251.11376953125-0.000538 121.113769531251.11425781251.114013671875-0.000199131.1140136718751.11425781251.1141357421875-0.0000297141.11413574218751.11425781251.114196777343750.000055由上表可知原方程的根α≈x=1.1141967773437514该问题得精确解为α=1.114157140871",故实际误差为0.0000396"323.判断用等价方程x=φ()x建立的求解的非线性方程fxxx()=−−=10在1.5附近的根的简单迭代法x=φ()x的收敛性,其中kk+123216(A)φ()11/x=+x;(B)φ()x=1+x;(C)φ()x=x−11解:取1.5附近区间[1.3,1.6]来考察。(A)φ()1x=+,显然当x>0时,ϕ()x单调递减,2x而φ(1.3)1.59171596=,φ(1.6)1.390625=,因此,当x∈[1.3,1.6]时,φ()x∈[1.3,1.6]。22又当x∈[1.3,1.6]时,φ"()x=−≤<0.921<,33x1.31由迭代法收敛定理,对任意初值x∈[1.3,1.6],迭代格式x=1+,(0k=,1,2,)"收敛。k+12xk1(B)φ()(1x=+x)3,则φ(1.3)1.390755416=,φ(1.6)1.526921344=,212xφ"()x=>0(0x>),2323(1+x)所以当x∈[1.3,1.6]时,φ()x∈[1.3,1.6]。22x1.6又当x∈[1.3,1.6]时,φ"()x=≤<0.5521<,22332233(1++x)(11.3)123由迭代法收敛定理,对任意初值x∈[1.3,1.6],迭代格式x=+(1x),(0k=,1,2,)"收敛。kk+11(C)φ()x=,由于当x∈[1.3,1.6]时,有x−1 −11φ"()x=≥=1.0758287061>,332(x−−1)222(1.61)1所以对任意初值x∈[1.3,1.6](原方程的根除外),迭代格式x=(0k=,1,2,)"发k+1x−1k散。4.确定x=φ()x的简单迭代法x=φ()x的收敛区间[ab,]。如果收敛,试估计使精度达到kk+17−410时所需的迭代次数并进行计算。x22−+ex5sinx+cosx(A)φ()x=;(B)φ()x=+2;(C)φ()x=23x2x2x2解:(A)方程为2−e+x−3x=0,设f(x)=2−e+x−3x,则f(0)=1>0,x22−ex+f(0.5)=-0.8987<0,故有根区间为[0,0.5],题中φ()x=,3x02x−e2×0−e|φ"(x)|=||≤||=0.333333x22−+ex故迭代公式φ()x=在含根区间[0,0.5]内收敛。33232(B)方程为x−2x−5=0,设f(x)=x−2x−5,则f(2.5)=-1.875<0,51010f(3)=4>0,故有根区间为[2.5,3],题中φ()x=+2,|φ"(x)|=|−|≤||=0.64<1233xx2.55故迭代公式φ()x=+2在含根区间[2.5,3]内收敛。2x(C)方程为sinx+cosx−2x=0,设f(x)=sinx+cosx−2x,则f(0)=1>0,sinx+cosxf(1)=-0.6182<0,故有含根区间[0,1],题中φ()x=,2cosx−sinxcos0−sin0|φ"(x)|=||≤||=0.5<1225.对下点列用埃特金方法加速。 x=0.54030,0x=0.87758,1x=0.94496,2x=0.96891,3x=0.98007,4x=0.98614,5x=0.98981.62~(x−x)k+1k8解:由埃特金加速公式xk=xk−计算,结果列下表:x−2x+xk+2k+1k~kxkkxk00.5403000.9617812834383110.8775810.9821175178448120.9449620.9898077326036030.9689140.9800750.9861460.9898126.令初值x=1,分别用牛顿迭代法,双点弦割法和单点弦割法求解方程fxx()=−=60的0解。解:牛顿迭代法f"(1)=2>0,f""(2)=2>0,满足f"(1)f""(1)≥0,由牛顿迭代法的收敛条件知当取初值为x=1时迭代法收敛。02f(xk)xk−6xk3牛顿迭代格式为:x=x−=x−=+k+1kkf"(x)2x2xkkkkxk0113.522.6071428571428632.4542563600782842.4494943716069752.4494897427875562.44948974278318 72.44948974278318在第6部迭代后,迭代点得小数点后14位已无变化,故可取α≈x=2.449489742783186双点弦割法f(x)xx+6kk−1k双点弦割法迭代格式为:x=x−(x−x)=k+1kk−1kf(x)−f(x)x+xk−1kk−1kkxk0113.5922.1111111111111132.3861386138613942.4542563600782852.4494273572571262.4494896821414472.4494897427839582.4494897427831892.44948974278318在第8部迭代后,迭代点得小数点后14位已无变化。双点弦割法f(x)xx+6k0k双点弦割法迭代格式为:x=x−(x−x)=k+1k0kf(x)−f(x)x+x0k0kkxk0113.522.1111111111111132.6071428571428642.3861386138613952.4766081871345062.4381833473507272.4542563600782882.4474895545641292.45033071771908102.44913644779691112.44963821399228 122.44942735725712132.44951595791130142.44947872716250152.44949437160696162.44948779773504172.44949056010085182.44948939934302192.4494898870981610202.44948968214143212.44948976826509222.44948973207557232.44948974728256242.44948974089252252.44948974357764262.44948974244934272.44948974292346282.44948974272423292.44948974280795302.44948974277277312.44948974278755322.44948974278134k=31以后,迭代点得小数点后11位已无变化,因收敛速度较慢,故只精确到小数点后11位337.建立利用方程xc−=0求cc(0>)的Newton迭代格式,并讨论算法的收敛性。33f(x)x−c2x+ckkk解:牛顿迭代格式为:x=x−=x−=k+1kk22f"(xk)3xk3xk32令f(x)=x−c,因为当x>0时,f"(x)=3x>0,f""(x)=6x>0,3故对于任何满足f(x)=x−c>0,033即x>c的初值x,上述Newton迭代产生的迭代序列收敛于c。00c38.建立利用方程x−=0求cc(0>)的Newton迭代格式,并讨论算法的收敛性。2x cx−f(x)x23cxkk解:牛顿迭代格式为:x=x−=x−=k+1kk2c3f"(xk)1+xk+2c3xc2c6c令fxx()=−,因为当x>0时,f"(x)=1+>0,f""(x)=−<0234xxx3故对于任何满足f(x)=x−c<0,03311即00)解:由f(x)=⎨,⎪⎩−−x(x<0)11(i)当x>0时,f(x)=x,f"(x)=>0,f""(x)=−<0,要使Newton迭代法2x34x收敛对于初值x,需满足f(x)=x<0,显然这样得初值是不存在的,故当x>0时,Newton000迭代法不收敛。(ii)当x<0时,同上的分析方法可得,初值也不存在的,故当x<0时,Newton迭代法也不收敛。所以用Newton迭代求解方程f()xs=ignxx()不收敛。110.写出求解方程fx()=−=10的Newton迭代格式并判断以下情形的收敛性。x(1)xx><20或;(2)xx=20或=;(3)02<20或时,|1−x|>1,lim(1−x)=∞,故迭代序列{x}不收敛;0000kk→∞(2)当xx==20或时,|1−x|=1,limx=0,迭代序列{x}收敛,但不收敛于方程的000kkk→∞解;k2(3)当00,又⎜⎟(2)=LA1⎝⎠0A ⎛⎞10"""⎜⎟(1)a⎜⎟−21%#⎜⎟(1)a11其中:L=⎜⎟显然,L非奇异;对任何x≠0,有:Lx≠0111⎜⎟#"%⎜⎟(1)a⎜⎟−n1"""""1⎜⎟(1)a⎝⎠11TTTT∵A正定,∴()()LxALx=xLALx()0>,∴LAL正定;11111116(1)⎛⎞a0T11(1)(2)又:L11AL=⎜⎟(2)而a11>0故A正定;⎝⎠0An(1)(1)(1)当A对角占优时,||||aaii≥∑ijij≠nn(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)||||aaii−∑ij=−|/aaaaiii11i11|−∑|/aaaaij−i11j11|ij≠ijj≠=,21⎧⎫n(1)(1)(1)(1)(1)(1)(1)(1)=−(1)⎨⎬||aaaaii11i11i−−∑||aaaaij11i11ja11⎩⎭ijj≠=,21⎧⎫n(1)(1)(1)(1)(1)(1)(1)(1)≥−(1)⎨⎬||aaii11||(aai11i−+∑||aaij11||aai11j)a11⎩⎭ijj≠=,21⎧⎫nn(1)(1)(1)(1)(1)=−(1)⎨⎬||aa11(ii∑∑||aij)−|aai11j|a11⎩⎭ijj≠=,2ijj≠=,11⎧⎫nn(1)(1)(1)(1)(1)=−(1)⎨⎬||aa11(ii∑∑||aaij)||||−i1a1ja11⎩⎭ijj≠=,2ijj≠=,11⎧⎫n(1)(1)(1)(1)(1)≥−(1)⎨⎬||aa11(ii∑||aaaij)||−i1||11a11⎩⎭ijj≠=,21⎧⎫n(1)(1)≥−(1)⎨⎬||aa11∑||ij≥0a11⎩⎭ijj≠=,1(2)故A对角占优 4.证明(1)两个单位上(下)三角形矩阵的乘积仍为单位上(下)三角形矩阵;(2)两个上(下)三角形矩阵的乘积仍为上(下)三角形矩阵.证明:(1)不妨考虑证单位下三角矩阵,单位上三角矩阵证明方法相同⎧⎧00,,ji>>ji⎪⎪设AB=C其中:Aj=====⎨⎨1;1;,,iBjiC(c)ijnn×⎪⎪aji,,<∑abikkj(,∵kia时)ik=0k=1k=1=0(∵jikb>≥时,0=)kj当i>j时nicaij==∑∑ikkjbaikkjbkk==1jn当i=j时,caii==∑ikkibaiiiib=1k=1当i>j时ni,所以,C为单位上三角矩阵caij==∑∑ikkjbaikkjbkk==1j(2)证明方法类似(1)5.证明单位上(下)三角形矩阵的逆矩阵仍为单位上(下)三角形矩阵;非奇异上(下)三角形矩阵的逆矩阵仍为非奇异的上(下)三角形矩阵;证明:……………………………………………………………………6.用矩阵的三角分解求解下列线形代数方程组⎛⎞−−2235⎛⎞x⎛−1⎞1⎜⎟⎜⎟⎜⎟1212−x4(1)⎜⎟⎜⎟2=⎜⎟⎜⎟2532−⎜⎟x⎜7⎟3⎜⎟⎜⎟⎜⎟⎝⎠1323⎝⎠x4⎝0⎠ ⎛⎞1⎛⎞−−2235⎛⎞−1⎜⎟1⎜⎟51⎜⎟7⎛⎞2⎜⎟−1⎜⎟1⎜⎟⎜⎟L=⎜⎟2(0)U=⎜⎟22y=⎜⎟2x=⎜⎟−1解:X⎜⎟−131⎜⎟33⎜⎟9⎜⎟2⎜⎟⎜⎟−⎜⎟−⎜⎟⎜⎟1⎜⎟22⎜⎟2⎝⎠−1⎜⎟−211⎜⎟⎜⎟⎝⎠2⎝⎠3⎝⎠−3⎛⎞1234⎛⎞x1⎛2⎞⎜⎟⎜⎟⎜⎟18(2)⎜⎟14916⎜⎟x2=⎜10⎟⎜⎟182764⎜⎟x⎜44⎟3⎜⎟⎜⎟⎜⎟⎝⎠11681256⎝⎠x4⎝190⎠解:⎛⎞1⎛⎞1234⎛⎞2⎛⎞−1⎜⎟⎜⎟⎜⎟⎜⎟11261281L=⎜⎟U=⎜⎟y=⎜⎟x=⎜⎟⎜⎟131⎜⎟624⎜⎟18⎜⎟−1⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠1761⎝⎠24⎝⎠24⎝⎠1⎛⎞81−−362718⎛⎞x⎛252⎞1⎜⎟⎜⎟⎜⎟−−361166268x148(3)⎜⎟⎜⎟2=⎜⎟⎜⎟27−−629844⎜⎟x⎜74⎟3⎜⎟⎜⎟⎜⎟⎝⎠−−18684490⎝⎠x⎝134⎠4解:⎛⎞9⎛⎞28⎛⎞4⎜⎟⎜⎟⎜⎟−410263L=⎜⎟y=⎜⎟x=⎜⎟⎜⎟358−⎜⎟15⎜⎟2⎜⎟⎜⎟⎜⎟⎝⎠−−2617⎝⎠7⎝⎠1⎛⎞42.423⎛⎞x1⎛12.280⎞⎜⎟⎜⎟⎜⎟2.45.4445.8x16.928(4)⎜⎟⎜⎟2=⎜⎟⎜⎟245.217.45⎜⎟x⎜22.957⎟3⎜⎟⎜⎟⎜⎟⎝⎠35.87.4519.66⎝⎠x4⎝50.945⎠解 ⎛⎞2⎛⎞6.14⎛⎞1.2⎜⎟⎜⎟⎜⎟1.224.78−0.8L=⎜⎟y=⎜⎟x=⎜⎟⎜⎟11.41.5⎜⎟6.75⎜⎟1.7⎜⎟⎜⎟⎜⎟⎝⎠1.522.13⎝⎠6⎝⎠2⎛⎞123⎛⎞412−⎜⎟⎜⎟7.求解矩阵方程4710X=144−6。⎜⎟⎜⎟⎜⎟⎝⎠142231⎜⎟⎝⎠4514−1719−1⎛⎞123412⎛⎞−⎛⎞111⎜⎟⎜⎟⎜⎟解;X=47101446−==000⎜⎟⎜⎟⎜⎟⎝⎠⎜⎟142231⎝⎠⎜⎟4514−17⎝⎠⎜⎟101−8.用追赶法解线性代数方程组⎛⎞21⎛3⎞⎜⎟⎜⎟1315⎜⎟X=⎜⎟。⎜⎟111⎜3⎟⎜⎟⎜⎟⎝⎠21⎝3⎠解:b=2b=3b=1b=11234a=1a=1a=2c=1c=1c=12341235lb==2ucl==/1/2lba=−=u11111222122357ucl==/,lba=−=u,ucl=/=,lba=−=u−222333233344435533378y=ydy=−()al/=ydy=()−=al/,ydy=()−=al/11221223323344344253xy==1xyu=−=x1xyu=−=x1xyu=−=x144333422231112⎛⎞1⎜⎟1∴x=⎜⎟⎜⎟1⎜⎟⎝⎠1110证明等价关系:||||||||x≤≤≤xxx||||||||12∞1n n2证明:∵||x||m∞=≤=ax||xii∑|||xx|||21≤≤ini=1nnn||||x1又||||x1=≤∑∑|xxii|max||==∑||||x∞n||||x∞,所以≤||||x∞1≤≤innii==11i=1nn2由Cauchy不等式知:∑∑||xii≥||x,所以:||||||||x12≥xii==11综上说述,即证。20||Ax||pnn×11证明由||A||=max定义的|||•|是R中的范数。p||||0x≠||||xp||(ABx+)||p||αA||=maxp||||0x≠||||xp证明:显然:||A||≥0且||AA||=⇔=00pp||AX||||Bx||Pp≤+maxmax||B||||A||pp||||0xx≠≠||||xx||||0||||pp||αAx|||α|||Ax||pp任意常数α||αA||=max=maxp||||0x≠||||x||||0x≠||||xpp||Ax||p=||mαax=||α||A||||||0x≠||||xp||(A+Bx)||||AXB+x||||AXB||+||x||ppPp||A+B||=max=max≤max||||0x≠||||x||||0x≠||||x||||0x≠||||xppp||AX||||Bx||Pp≤+maxmax=||A||+||B||pp||||0xx≠≠||||xx||||0||||ppn12证明||A||1=max∑|aij|1≤≤jni=1证明:对任何||||x=1由于||x||<1故1i1nnnn||Axa||1≤=≤max∑∑∑|ijxaj|max|ij||xaj|max|ij|,因此,||A||1≤max∑|aij|11≤≤jn≤≤jn1≤≤jn1≤≤jnii==11i=1i=1 nn另一方面:设指标jo满足:∑||maaijo=ax||∑ij1≤≤jnii==11⎧10a≥**⎪ijo*定义x如下:x=⎨显然,||x||=1⎪−<10a⎩ijonnn*而且,()Axajo===∑∑ijooxai||mijax||∑aij1≤≤jnii==11i=1n**从而,||AxA||||1≥=x||jimax∑|aj|o1≤≤jni=121n*即成立:||A||11=≥max||Ax||||Ax||1=max∑|aij|||||xj11≤≤ni=1综上得命题成立⎛⎞1.0001.001⎛⎞x1⎛2.001⎞13研究线形代数方程组⎜⎟⎜⎟=⎜⎟的性态,并求精确解,设近似解⎝⎠1.0001.000⎝⎠x2⎝2.000⎠∼~⎛⎞2∼||x−x||x=⎜⎟,计算余量rbAx=−以及近似解的相对误差⎝⎠0||||x⎛⎞-10001001解:因为该线性方程组的系数矩阵的逆矩阵为:⎜⎟⎝⎠1000-1000⎛⎞1条件数为4.0020e+003,远大于1。所以其为病态的,其精确解为:x=⎜⎟⎝⎠1⎛⎞2.001⎛⎞1.0001.001⎛2⎞⎛⎞0.001余量为:r=⎜⎟−⎜⎟⎜⎟=⎜⎟⎝⎠2.000⎝⎠1.0001.000⎝0⎠⎝⎠0~∼⎛⎞1⎛⎞1||xx−||||xx−=||||⎜⎟||1.4142=,||||||x==⎜⎟||1.4142,所以:=100%⎝⎠−1⎝⎠1||||x14.计算Hilbert矩阵 ⎛⎞111⎜⎟1"23n⎜⎟⎜⎟1111"Hn=⎜⎟234n+1⎜⎟####⎜⎟⎜⎟1111⎜⎟"⎝⎠nn+122n+−n1−1111−−−解:先求出HHHH,,,的逆矩阵H,,,HHH3456345622−1−1−1然后,计算||H||,||H||,||H||,||H||,||H||,||H||,||H||,3344556−13||H||,得出:condH()7=48condH()31≈×063457condH()91≈×0condH()61≈×056(0)15.求用雅克比迭代解下列线性代数方程组的两次迭代解(取初始向量X=0)。⎧10xx+=56,12⎧31xxx−+=,⎪⎪51xxx+−=0425,123123⎪(2)⎨(1)3⎨xxx123++=620,⎪−48xxx234+−=−11,⎪⎩3374xxx++=;⎪−+=−xx511;123⎩34解:(1)雅可比迭代式为:⎧(1kk+)1()()kxx=+−(1x)⎪1233⎪⎛⎞0⎪(1kk+)1()()k(0)⎜⎟⎨xx=−−(2x),取x=0213⎜⎟⎪6⎜⎟⎝⎠0⎪(1kk+)1()()kx=−−(43xx)⎪312⎩7⎛⎞1⎛⎞1⎜⎟⎜⎟73⎜⎟(1)⎜⎟(2)⎜⎟5则x=⎜⎟0x=−⎜⎟14⎜⎟4⎜⎟⎜⎟⎜⎟3⎝⎠7⎜⎟⎝⎠7 ⎧(1kk+)1()xx=−(65)⎪1210⎪⎪(1kk+)1()()kx=−+(255xx4)⎪21310(2)雅可比迭代式为⎨⎪xx(1kk+)=−+1(114()+x()k)324⎪8⎪(1kk+)1()⎪xx=−+(11)43⎩523⎛⎞3⎛⎞13⎜⎟⎜⎟−520⎜⎟⎜⎟⎛⎞0⎜⎟5⎜⎟33⎜⎟(0)=⎜⎟0(1)⎜⎟2(2)⎜⎟20取x,则x=⎜⎟x=⎜⎟⎜⎟011−2⎜⎟−⎜⎟⎜⎟⎝⎠0⎜⎟8⎜⎟5⎜⎟11⎜⎟99⎜⎟−⎜⎟−⎝⎠5⎝⎠40()k−316.若要求精度xx−<10,仍用雅克比迭代求解15题,至少需迭代多少次?∞解:1)雅可比迭代矩阵为:⎛⎞11⎜⎟0−33⎜⎟⎜⎟11B=−0−||B||0.8084=J⎜⎟J23⎜⎟33⎜⎟−−0⎜⎟⎝⎠77⎛⎞ε()1||||−BJ由公式KB>⎜⎟lnln(||||)知,需要10次迭代(1)(0)J⎝⎠||xx−||(2)雅可比迭代矩阵为: ⎛⎞1⎜⎟0002⎜⎟⎜⎟12−00⎜⎟25B=⎜⎟,同上,需要22次迭代。J11⎜⎟00⎜⎟28⎜⎟1⎜⎟000⎝⎠524(0)17.求用高斯-塞德尔迭代求解15题的两次迭代解(取初始向量X=0)。(1)高斯赛德迭代式⎧(1kk+)1()()kxx=+−(1x)⎪1233⎪⎪(1kk++)1(1)()k⎨xx=−−(2x)213⎪6⎪(1kk++)1(1)(1k+)xx=−−(43x)⎪312⎩7⎛⎞1⎛⎞1⎜⎟⎜⎟39⎛⎞0⎜⎟⎜⎟(0)⎜⎟(1)⎜⎟1(2)⎜⎟2取x=0,则x=−x=−⎜⎟⎜⎟6⎜⎟9⎜⎟⎝⎠0⎜⎟⎜⎟113⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠2⎝⎠21(2)高斯赛德迭代式⎧(1kk+)1()xx=−(65)⎪1210⎪⎪(1kk++)1(1)()kx=−+(255xx4)⎪21310⎨⎪xx(1kk++)=−+1(114(1)+x()k)324⎪8⎪(1kk++)1(1)⎪xx=−+(11)43⎩5⎛⎞0⎛⎞0.6000⎛⎞−0.5000⎜⎟⎜⎟⎜⎟02.20002.6400取x(0)=⎜⎟则x(1)=⎜⎟x(2)=⎜⎟⎜⎟0⎜⎟−2.7500⎜⎟−0.3369⎜⎟⎜⎟⎜⎟⎝⎠0⎝⎠−2.2550⎝⎠−2.2674 (0)18.求用SOR迭代(ω=1.1)求解15题的两次迭代解(取初始向量X=0)。解:(1)⎧(1kk+)()1.1()kk()()kxx=+−+(3xxx1+−)⎪111233⎪⎪(1kk++)()1.1()k(1kk)()⎨xx=+−−−(6xxx2)k=0,1,22213⎪6⎪(1kk++)()1.1()k(1kk)(1+)xx=+−+−(7x43xx−)⎪33312⎩725⎛⎞0⎛⎞0.3333⎛⎞0.0492(0)⎜⎟(1)⎜⎟(2)⎜⎟取x=0,则x=−0.1833x=−0.1923⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠0⎜⎟⎝⎠0.5007⎜⎟⎝⎠0.5880⎧(1kk+)()1.1()k()kxx=+−+−(10x65)x⎪111210⎪⎪(1kk++)()1()k(1kk)()x=+−+−xxx(10255+4)x⎪2221310(2)⎨k=0,1,⎪xx(1kk++)=+−−+()1(8x()k114xx(1kk)+())33324⎪8⎪⎪(1kk++)=+−−+()1()k(1k)xx(5x11x)4443⎩5⎛⎞0⎛⎞0.6000⎛⎞−0.6535⎜⎟⎜⎟⎜⎟02.17002.5625取x(0)=⎜⎟则x(1)=⎜⎟x(2)=⎜⎟⎜⎟0⎜⎟−0.1815⎜⎟−0.2554⎜⎟⎜⎟⎜⎟⎝⎠0⎝⎠−2.2399⎝⎠−2.032219.设有线性代数方程组⎧21xxx−+=−,123⎪⎨2224xxx++=,123⎪⎩−−+=−xxx25;123(1)判断雅克比迭代的收敛性;(2)判断高斯—塞德尔迭代的收敛性。解:(1)雅克比迭代矩阵 ⎛⎞011−⎛⎞λ−11⎜⎟⎜⎟2BJ=−⎜⎟202−||λIB−J=⎜⎟22λ=λλ(+=50)⎜⎟⎝⎠110⎜⎟⎝⎠−−11λ5∴ρ()BJ=>1故雅克比迭代发散2(2)高斯—塞德尔迭代矩阵⎛⎞1⎛⎞11⎜⎟00⎜⎟0−−122226⎛⎞200011⎛⎞−⎜⎟⎛⎞011−⎜⎟⎜⎟⎜⎟⎜⎟11⎜⎟⎜⎟11B=−220002=−0002−=0−−GS−⎜⎟⎜⎟⎜⎟22⎜⎟⎜⎟22⎜⎟⎝⎠−−112000⎜⎟⎝⎠⎜⎟⎜⎟⎝⎠000⎜⎟111⎜⎟⎜⎟0⎜⎟⎜⎟00−⎝⎠42⎝⎠22⎛⎞11||λλIB−=+=⎜⎟λ0,∴ρ()B=<1,故高斯—塞德尔迭代收敛GS−GS−⎝⎠22⎛⎞aa111220.设矩阵A=⎜⎟为二阶矩阵,且aa1112≠0。证明雅克比迭代和高斯-塞德尔迭代⎝⎠aa2122同时收敛或发散。证明:因为aa≠0,所以aa≠≠0,011121112雅克比迭代矩阵⎛⎞1⎛⎞a12⎜⎟0⎜⎟λ=⎜⎟a11⎜⎟a11=⎛⎞2−=aa1221BJ||λIB−=J⎜⎟λ0⎜⎟1⎜⎟a⎝⎠aa211122⎜⎟0⎜⎟λ⎝⎠a22⎝⎠a22aa2112∴ρ()BJ=||aa1122高斯-塞德尔迭代矩阵⎛⎞⎛1a12⎞−1⎜⎟⎜00−⎟⎛⎞a0⎛⎞00−−aaaa⎛⎞B==1121⎜⎟⎜1121=11⎟GS−⎜⎟⎜⎟⎜⎟⎝⎠aa⎝⎠00⎜⎟⎜aa1⎝⎠00a⎟1222212112⎜⎟⎜−0⎟aaaaa⎝⎠⎝1122221122⎠ ⎛⎞aaaa21122121||λλIB−=−=⎜⎟λ0,∴ρ()B=||GS−GS−aaaa⎝⎠11221122所以,雅克比迭代和高斯-塞德尔迭代同时收敛或发散。⎛⎞⎛⎞63⎛⎞x1021.设线性代数方程组为⎜⎟⎜⎟⎜⎟=.⎝⎠⎝⎠32⎝⎠x−12(0)T(4)(1)试用最速下降法求解(取初始向量X=()0,0,计算到X);27(0)T(2)试用共轭梯度法求解(取初始向量X=()0,0)。解:(1)最速下降法T()kk()()pp()(k)()k()k(1kk+)()()()kk由pbA=−xt=和x=+xtpT()kk()()Ap()p(0)⎛⎞0(0)()1⎛⎞0K=0,1,2,3得p=⎜⎟t=0.5000x=⎜⎟⎝⎠-1⎝⎠-0.5000(1)⎛⎞1.5000(1)(2)⎛⎞0.2500p=⎜⎟t=0.1667x=⎜⎟⎝⎠0⎝⎠-0.5000(2)⎛⎞0(2)(3)⎛⎞0.2500p=⎜⎟t=0.5000x=⎜⎟⎝⎠-0.7500⎝⎠-0.8750(3)⎛⎞1.1250(3)(4)⎛⎞0.4375p=⎜⎟t=0.1667x=⎜⎟⎝⎠0⎝⎠-0.8750(2)共轭梯度法T()kk()(1kk+)()()()kk()k(rp)()(k)()k()0(0)由x=+xtpt=rbA=−xrp=T()kk()()Ap()p(1k+)()k(Ar,p)(1kkk++)(1)()()k()kp=+rapa=−()k()k()Ap,p()0⎛⎞0()0⎛⎞0(0)()1⎛⎞0K=0,1得r=⎜⎟p=⎜⎟t=0.5000x=⎜⎟⎝⎠-1⎝⎠-1⎝⎠-0.5000()1⎛⎞1.5000(0)()1⎛⎞1.5000r=⎜⎟a=2.2500p=⎜⎟⎝⎠0⎝⎠-2.2500(1)()2⎛⎞1t=0.6667x=⎜⎟,即为精确解⎝⎠-2 习题四1.已知ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0.8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差解:线形插值:取x=2.0y=0.693100x=2.2y=0.788511x=2.3y=0.832922xx−−−−1xx02.12.32.12.0Lf=+=+(0)xf(1)x0.69310.8329=0.74101x0−−−xx11x02.02.32.32.0−28抛物线插值:()x−−xxx()()x−xxx()−()x−xxx()−120201l=l=l=202122()x−−xxx()()x−−xxx()()x−−xxx()010210122021Llylyly=++=0.74222002112222.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值解:解:取x=0x=2x=3x=50123()x−−−xxxxx()()()x−xxxxx()−−()123023l=l=3031()x−−−xxxxx()()()x−−−xxxxx()()010203101213()x−−−xxxxx()()()x−xxxxx()−−()013012l=l=3233()x−−−xxxxx()()()x−−−xxxxx()()2021233031323313262Llylylyly=+++=x−x+x+13300311322333106153.设函数f(x)在[a,b]上具有直到二阶的连续导数,且f(a)=f(b)=0,12"求证:max|()|fxb≤−(af)max|()|xaxb≤≤8axb≤≤xa−−xb解:取x==axb;,Lf=+=()af()0b011ab−−ba""""2f()εεfb()(−a)∵RfxLx=−≤|()()||(xaxb−−)()||≤|||11224""2""f()(εba−)f()εf"(ε)∴|()||()||fx≤+Lx|||=+|()||Lx||(ba−)|=|||b−a|1124884.证明n次Lagrange插值多项式基函数满足nkk∑xiln,i(x)=x,0≤k≤ni=0 nkk解:取f()xx=则Lnl=∑nii()xxi=0(1n+)nkn(1+)nfx()()xf()xL−==nRn∑(xx−i)=∑()x−xi=0n!i=0n!i=0所以f()xL=nx()即证5.证明ω(x)nl,(x)=ni(x−x)ω"(xi)in()xxxx−−()""()xxxx−−()()xx−01ii−+11n29证明:、lni=()x−−xxx()""()xxxx−−()()xx−ii01ii−+11iiin()x−−xxx()""()xxxx−−()()xxxx−−()01ii−+11ni=()x−−xxx()""()xxxx−−()()xxxx−−()i01iiiii−+11ini取ω=−()xxxx()−""()xxxxxx−()−()−()xx−ni01−+1ii1n"ω()(xxxxxxxxxxx=−)(""−+−−)(())(−+)nn102n则()xxxx−−()""()xxxx−−()()xx−+"01ii−+11n+−()xxxx()−"()xx−01n−1"ω()(x=−xxxxxxxx)(−)(""−)(−)(xx−)nii01iiiii−+11inω()xn所以,lni="()(x−xxω)inin6.设f(x)=a+ax+"ax有n个不同的实根x,x,"x.01n12nnk⎧0,xi证明:∑=⎨−1i=1f"(xi)⎩ank证明:取ϕ()x=xω=−()xxx"()−xnn1n而,f()xa=++"ax有n个不同的实根。可以写成f()xax=ω()0nnnnnknxxϕϕ()1()xiii∑∑""==∑ii==11f()xinaxaxxxxxxωn()ii=1(i−−−−11)(""ii−+)(iii1)(xxn)1⎧00≤kn≤−2==ϕ[,,xx"x]⎨12n−1an⎩aknn=−1 7.分别求满足习题1和习题2中插值条件的Newton插值(1)xf[]xf[,]xxf[,,]xxxiiii−1iii−−212.00.69312.20.78850.4772.30.83290.444-0.1130Nx()=+fx[]fxxxx[,])(−)+fxxxxxxx[,,])(−−)(1)200100120=0.693+0.477(x-2)-0.11(x-2)(x-2.2)N(2.1)=0.693+0.0477-0.0011=0.74192(2)xf[]xf[,]xxf[,,]xxxf[,,,]xxxxiiii−1iii−−21iiii−−−3210123132-1-2/3553/25/63/1023Nx()1=+−xxx(2)−+xx(2)(3)−x−33108.给出函数f(x)的数表如下,求四次Newton插值多项式,并由此计算f(0.596)的值x0.400.550.650.800.901.05if(x)0.410750.578150.696750.888111.026521.25382i解:xf[x]F2F3F4F5F6ii0.40.410750.550.578151.116000.650.696751.186000.280000.80.888111.275730.358930.197330.91.026521.384100.433470.18634-0.022001.051.253821.515330.524920.228630.088460.16394f(x)=0.41075+1.11600(x-0.4)+0.28(x-0.4)(x-0.55)+0.19733(x-0.4)(x-0.55)(x-0.65) -0.022(x-0.4)(x-0.55)(x-0.65)(x-0.8)+0.16394(x-0.4)(x-0.55)(x-0.65)(x-0.8)(x-0.9)所以f(0.596)=0.631959.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值x0.40.50.60.7if(x)0.389420.479430.564640.64422i解:前插:取节点:0.50.60.7xf(x)ii0.50.47943310.60.564640.085210.70.644220.07958-0.00563N(0.5+th)=0.47943+0.08521*t-0.002815*t*(t-1),h=0.1取t=0.78912N(0.57891)=0.47943+0.06723921+0.00046848=0.54713769≈0.547142即sin(0.57891)=0.54714后插:取节点0.40.50.6xf(x)ii0.40.389420.50.479430.090010.60.564640.08521-0.00480.0048N(0.6+th)=0.56464+0.08521*t-*t(t+1),h=0.1取t=-0.210922N(0.57891)=0.56464+0.08521(-0.2109)-0.0024(-0.2109)(0.7891)=0.5406862≈0.54069210.证明差商有线性性质,即若h(x)=cf(x)+cg(x),其中,c,c为常数,1212则h[x,x,"x]=cf[x,x,"x]+cg[x,x,"x]01n101n201n证明:因为hxcfxcgx()=+()()12∴hx()=+cfx()cgx()n=0,1……niii12nnnhx()fx()gx()jjj∴hxx[,,01"xn]==+∑∑∑nnnc1c2jjj===000∏∏∏()xjjj−−−xi()xxi()xxiiii===000ij≠≠≠ijij=+cfxx[,,][""xcgxx,,]x101nn2017401701811.设f(x)=x+x+3x+1,计算f[2,2,"2]及f[2,2,",2] (7)7017f()ε07解:∵f()xCab∈[,]∴f[2,2,"2]==1ε∈[2,2]7!(8)018f()ε∴f[2,2,"2]==08!12试根据数表x12iy23i32y"j1-1构造Hermite多项式插值解:12>112>0>1>-223>-2>-123232所以Nxxxx=+−−−2(1)2(1)(2)2895−=−+−+xx313给出数表x123iy2412iy"3j试求Hermite多项式插值解:12>224> >3>424>5>8312232N=+−−−2(xxx1)(1)(−+−2)4(xx1)(−2)=41xxx−+−931143114.利用差分性质证明:1+2+"+n=n(n+1),23322211+2+"+n=n(n+1)(2n+1)6j615设对每一个整数j,有f=ε(−1),计算Δf,并对该函数做一个差分表jj解:j1ε(1)−j+1j2ε(1)−-2(1)ε−j+2jj3ε(1)−2(1)ε−4(1)ε−j+3jjj4ε(1)−-2(1)ε−-4(1)ε−-8(1)ε−j+4jjjj5ε(1)−2(1)ε−4(1)ε−8(1)ε−16(1)ε−j+5jjjjj6ε(1)−-2(1)ε−-4(1)ε−-8(1)ε−-16(1)ε−-32(1)ε−j+6jjjjjj7ε(1)−2(1)ε−4(1)ε−8(1)ε−16(1)ε−32(1)ε−64(1)ε−6j所以+f=−64(1)εj2−1216设函数y=(1+25x),−1≤x≤1取等距样条节点。x=−1+hi,i=0,1,"n=ih(1)计算函数在这些节点处的函数值,并作121−21−解:取y=yh=+−+(125(11))yi=+−+(125(1hi))012650xiy"=−,i22(1+25x)i2(x−x)[2(x−x)+h]jj−12−1S(x)=(1+25(−1+h(j−1)))3h2(x−x)[2(x−x)+h]j−1j−1+(1+25(−1+jh)3h 2(−1+(j−1)h)(x−(−1+hj))(x−(−1+(j−1)h)-50⋅222(1+25(−1+(j−1)h))h250(−1+jh)(x+1−jh)(x+1−jh)-⋅222(1+25(−1+jh))h17给定插值条件数据x0123iy0000i和端点条件(1)m=1,m=0,(2)M=1,M=0030334试分别求满足上述条件的三次样条插值的分段表达式解:(1)易知:hi=1λ=1/2μ=1/2i=0,1,2,3.ji由基本方程组:λm+2m+μm=cij−1jjj+1j[λj(y−y)]μ(y−y)jj−1jj+1j和c=3{+}jhhjj+1⎧11m+2m+m=0012⎪⎪2241即有:⎨解出:m1=−m2=⎪11515m+2m=0⎪⎩212当x∈[0,1]时:2⎛4⎞241S(x)=(x−1)x+⎜−⎟x(x−1)=x(x−1)[x−1−x]=x(x−1)(11x−15)⎝15⎠1515−42⎛1⎞2当x∈[1,2]时:S(x)=(x−2)(x−1)+⎜⎟(x−1)(x−2)15⎝15⎠1=(x−2)(x−1)(7−3x)1512当x∈[2,3]时:S(x)=(x−3)(x−1)15(2)因为λm+2m+μm=cd=0c=0j=0,1,2,3ij−1jjj+1jjjm=1m=003 ⎡2λ0⎤⎢11⎥⎡1⎤⎡0⎤⎢2⎥⎢M⎥⎢0⎥⎢22⎥⎢1⎥=⎢⎥⎢121⎥⎢M2⎥⎢0⎥⎢22⎥⎢0⎥⎢0⎥⎣⎦⎣⎦⎢μ2⎥⎣N⎦15−41解出:λ=λ=0M=M=0N1221515322(x−x)(x−x)Mhx−xMhx−xjj−1j−1jjjjj−1由S(x)=M+M+(y−)+(y−)j−1jj−1j356hj6hj6hj6hj⎧1x(1−x)(19x−26)x∈[0,1]⎪90⎪⎪1知:S(x)=⎨(x−1)(x−20(5x−12)x∈[1,2]⎪90⎪1⎪(3−x)(x−20(x−4)x∈[2,3]⎩9018证明函数3⎧xx≥0S(x)=⎨,对任何含0为节点的分划都是三次样条函数⎩0x<019证明式(4.4.32)线性无关 习题五1.求最小二乘拟合直线拟合如下数据。(a)x-2-1012ky12334km∑()xkk−−xyy()mm11k=1解:由b=m,aybx=−*。其中x=∑xk,yy=∑k。2mk=1mk=136∑()xxk−k=1mm2计算可得x=0,y=2.6,∑()xxyykk−()−=7,∑()xxk−=10。k=1k=1∴b=0.7,aybx=−*2=.6,该组数据的最小二乘拟合直线为:yx=2.60.7+(b)x-4-2024ky1.22.86.27.813.2km解:解法同上题。用matlab计算得x=0,y=6.24,∑()xxyykk−()−=58,k=1m2∑()4xxk−=0。∴b=1.45,aybx=−=*6.24k=1该组数据的最小二乘拟合直线为:yx=6.241.45+(c)x0.00.250.500.751.00ky1.00001.28401.64872.11702.7183k解:解法同上题。mm2用matlab计算得x=0.5,y=1.7536,∑(xxyykk−−)()1.0674=,∑(xxk−=)0.625。k=1k=1∴b=1.7078,aybx=−*=0.8997该组数据的最小二乘拟合直线为:yx=0.89971.7078+2.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。(a)x1.01.11.31.51.92.1ky1.841.962.212.452.943.18k解:(1)一次最小二乘拟合多项式,做法如题一 mm2x=1.4833,y=2.4300,∑(xk−x)=0.9683,∑(xk−x)(yk−y)=1.1810,k=1k=1m∑(xk−x)(yk−y)k=1b==1.2196,a=y−bx=0.6209m2∑(xk−x)k=1∴该一次最小二乘拟合多项式为:p(x)=a+bx=0.6209+1.2196x离散点(*表示)和一次拟合多项式3.23732.82.6y2.42.221.811.21.41.61.822.22.4x2(2)二次最小二乘拟合多项式,设二次最小二乘拟合多项式为:p(x)=a+ax+ax,由012教材分析知,系数满足如下正规方程组:mmm⎡2⎤⎡⎤⎢m∑xk∑xk⎥⎢∑yk⎥⎢k=1k=1⎥⎡a0⎤⎢k=1⎥mmmm⎢xx2x3⎥⎢a⎥=⎢yx⎥∑k∑k∑k⎢1⎥∑kk,把表中的数值代入得:⎢⎥⎢⎥k=1k=1k=1k=1⎢mmm⎥⎢⎣a2⎥⎦⎢m⎥2322⎢∑xk∑xk∑xk⎥⎢∑ykxk⎥⎢⎣k=1k=1k=1⎥⎦⎢⎣k=1⎥⎦⎡68.914.17⎤⎡a0⎤⎡8.9⎤⎡a0⎤⎡0.5965807⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥8.914.1724.023a=22.808,解得a=1.253293⎢⎥⎢1⎥⎢⎥⎢1⎥⎢⎥⎢14.1724.02342.8629⎥⎢a⎥⎢38.0962⎥⎢a⎥⎢−0.01085343⎥⎣⎦⎣2⎦⎣⎦⎣2⎦⎣⎦∴该二次最小二乘拟合多项式为: 22p(x)=a+ax+ax=0.5965807+1.253293x−0.1085343x012离散点(*表示)和二次拟合多项式3.232.8382.6y2.42.221.811.21.41.61.822.22.4x(3)三次最小二乘拟合多项式,设三次最小二乘拟合多项式为:23p(x)=a+ax+ax+ax,由教材分析知,系数满足如下正规方程组:0123mmmm⎡23⎤⎡⎤⎢m∑xk∑xk∑xk⎥⎢∑yk⎥⎢k=1k=1k=1⎥⎢k=1⎥mmmm⎡a0⎤m⎢∑x∑x2∑x3∑x4⎥⎢⎥⎢∑yx⎥kkkkakk⎢⎥1⎢⎥k=1k=1k=1k=1⎢⎥=k=1,把表中的数值代入得:⎢mmmm⎥⎢m⎥⎢∑x2∑x3∑x4∑x5⎥⎢a2⎥⎢∑yx2⎥kkkk⎢⎥kk⎢k=1k=1k=1k=1⎥a⎢k=1⎥⎣3⎦⎢mmmm⎥⎢m⎥34563⎢∑xk∑xk∑xk∑xk⎥⎢∑ykxk⎥⎣k=1k=1k=1k=1⎦⎣k=1⎦⎡68.914.1724.023⎤⎡a0⎤⎡8.9⎤⎢⎥⎢⎥⎢⎥8.914.1724.02342.8629a22.8080⎢⎥⎢1⎥=⎢⎥,⎢14.1724.02342.862979.5192⎥⎢a⎥⎢38.0962⎥2⎢⎥⎢⎥⎢⎥24.02342.862979.5192151.8010a67.1883⎣⎦⎣3⎦⎣⎦ ⎡a0⎤⎡0.6290193⎤⎢⎥⎢⎥a1.185010解得:⎢1⎥=⎢⎥⎢a⎥⎢0.03533252⎥2⎢⎥⎢⎥a−0.001004723⎣3⎦⎣⎦∴该三次最小二乘拟合多项式为:2323p(x)=a+ax+ax−ax=0.6290193+1.185010x+0.03533252x+0.001004723x0123离散点(*表示)和三次拟合多项式393.63.43.232.8y2.62.42.221.811.21.41.61.822.22.4x(b)x4.04.24.54.75.15.55.96.36.87.1ky102.56113.18130.11142.05167.53195.14224.87256.73299.50326.72k解:(1)一次最小二乘拟合,做法如题一mm2x=5.4100,y=195.8390,∑(xk−x)=10.7090,∑(xk−x)(yk−y)=771.9531,k=1k=1m∑(xk−x)(yk−y)k=1b==72.0845,a=y−bx=-194.1382m2∑(xk−x)k=1∴该一次最小二乘拟合多项式为:p(x)=a+bx=−194.1382+72.0845x 离散点(*表示)和一次拟合多项式350300250y200150401005044.555.566.577.5x2(2)二次最小二乘拟合多项式,设二次最小二乘拟合多项式为:p(x)=a+ax+ax,由012教材分析知,系数满足如下正规方程组:mmm⎡2⎤⎡⎤⎢m∑xk∑xk⎥⎢∑yk⎥⎢k=1k=1⎥⎡a0⎤⎢k=1⎥mmmm⎢xx2x3⎥⎢a⎥=⎢yx⎥∑k∑k∑k⎢1⎥∑kk,把表中的数值代入得:⎢⎥⎢⎥k=1k=1k=1k=1⎢mmm⎥⎢⎣a2⎥⎦⎢m⎥2342⎢∑xk∑xk∑xk⎥⎢∑ykxk⎥⎢⎣k=1k=1k=1⎥⎦⎢⎣k=1⎥⎦⎡1054.1303.39⎤⎡a0⎤⎡54.1⎤⎡a0⎤⎡1.23556⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥54.1309.391759.8a=11367,解得a=−1.14352⎢⎥⎢1⎥⎢⎥⎢1⎥⎢⎥⎢303.391759.810523⎥⎢a⎥⎢68007⎥⎢a⎥⎢6.61821⎥⎣⎦⎣2⎦⎣⎦⎣2⎦⎣⎦∴该二次最小二乘拟合多项式为:22p(x)=a+ax+ax=1.123556−1.14352x+6.61821x012 离散点(*表示)和二次拟合多项式350300250y2004115010044.555.566.577.5x(3)三次最小二乘拟合多项式,设三次最小二乘拟合多项式为:23p(x)=a+ax+ax+ax,由教材分析知,系数满足如下正规方程组:0123mmmm⎡23⎤⎡⎤⎢m∑xk∑xk∑xk⎥⎢∑yk⎥⎢k=1k=1k=1⎥⎢k=1⎥mmmm⎡a0⎤m⎢∑x∑x2∑x3∑x4⎥⎢⎥⎢∑yx⎥kkkkakk⎢⎥1⎢⎥k=1k=1k=1k=1⎢⎥=k=1,把表中的数值代入得:⎢mmmm⎥⎢m⎥⎢∑x2∑x3∑x4∑x5⎥⎢a2⎥⎢∑yx2⎥kkkk⎢⎥kk⎢k=1k=1k=1k=1⎥a⎢k=1⎥⎣3⎦⎢mmmm⎥⎢m⎥34563⎢∑xk∑xk∑xk∑xk⎥⎢∑ykxk⎥⎣k=1k=1k=1k=1⎦⎣k=1⎦⎡1054.1303.391759.8⎤⎡a0⎤⎡54.1⎤⎡a0⎤⎡3.42904⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥54.1303.391759.810523a11367a−2.37919⎢⎥⎢1⎥=⎢⎥,解得:⎢1⎥=⎢⎥⎢303.391759.81052364608⎥⎢a⎥⎢68007⎥⎢a⎥⎢6.84557⎥22⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥1759.81052364608405620a417730a−0.0136742⎣⎦⎣3⎦⎣⎦⎣3⎦⎣⎦∴该三次最小二乘拟合多项式为:23p(x)=3.42904−2.37919x+6.84557x−0.0136742x 离散点(*表示)和三次拟合多项式350300250y2004215010044.555.566.577.5x3.证明正弦函数组:sinx,sin2x,sin3x,",sin(n−1)xk在点集X={x=π,k=0,1,",n}上线性无关。kn证明:假设存在{c,c,",c}使得,csinx+csin2x+"+csin(n−1)x=0成立。12n−112n−1由x取值于X,当k=0,n时,上述等式显然成立。当k=1,2,",n−1时,由方程组:⎧π2π3π(n−1)πcsin+csin+csin+"+csin=0⎪123nnnnn⎪2⎪2π2π6π2(n−1)πcsin+csin+csin+"+csin=0⎪123nnnnn⎪2⎪3π6π3π3(n−1)π⎨c1sin+c2sin+c3sin+"+cnsin=0⎪nnnn⎪""⎪2⎪(n−1)π2(n−1)π3(n−1)π(n−1)πcsin+csin+csin+"+csin=0123n⎪nnnn⎪⎩要判断函数组sinx,sin2x,sin3x,",sin(n−1)x在点集X上线性无关或线性,由线性代数知识,只需判断上面导出的线性方程组的系数矩阵的行列式是否为零即可。系数行列式为: π2π3π(n−1)πsinsinsin"sinnnnn22π2π6π2(n−1)πsinsinsin"sinnnnndetA=3π6π32π3(n−1)πsinsinsin"sinnnnn###%#2(n−1)π2(n−1)π3(n−1)π(n−1)πsinsinsin"sinnnnnπ43(数学归纳法)当n=2时,detA=sin=1≠0,2π2πsinsin33ππ当n=3时,detA==2sinsin≠02π4π33sinsin33假设当n≤k−1时,detA≠0。当n=k时,分两种情况:(1)n=k=2m+1考察行列式的第i行和第n−i+1行(1≤i≤m)元素的关系易知iπ(n−i+1)π2iπ2(n+i−1)πsin=sin,sin=−sinnnnn3iπ3(n−i+1)π4iπ4(n+i−1)πsin=sin,sin=−sinnnnn…………..(n−2)iπ(n−2)(n−i+1)π(n−1)iπ(n−1)(n+i−1)πsin=sin,sin=−sinnnnn所以我们可以把第n−i+1行上元素与第i行对应元素相加(1≤i≤m)则行列式转化为π2π3π(n−2)π(n−1)πsinsinsin"sinsinnnnnn######mπ2mπ3mπm(n−2)πm(n−1)πsinsinsin"sinsinnnnnn再(m+1)π3(m+1)π(m+1)(n−2)π2sin02sin02sin0nnn######(n−1)π3(n−1)π(n−2)(n−1)π2sin02sin02sin0nnn将第i行对应元素与第n−i+1行上元素的一半对应相减(1≤i≤m)则行列式转化为 2π(n−1)π0sin0"0sinnn######2mπm(n−1)π0sin0"0sinnn(m+1)π3(m+1)π(m+1)(n−2)π2sin02sin02sin0nnn######(n−1)π3(n−1)π(n−2)(n−1)π2sin02sin02sin0nnn最后把第i列与第n−i+1列交换则可把行列式转化为如下的块对角行列式44B0mmdetA=(−1)=(−1)BC,由归纳假设B≠0,C≠0,所以detA≠00C(2)当n=k=2m时的处理方法类似,这里从略。所以对于任意的n≥2,detA≠0成立。由detA≠0我们知道前面的线性方程组有唯一的零解,即仅当c=c="=c=0时,12ncsinx+csin2x+"+csin(n−1)x=0成立,所以得证。12n−14.求解例5.1.1。解:该问题得数据表格为:x58108150228y88225365687b由数据做草图观察可设:T=ax令Y=lnT,X=lnx,A=lna,于是方程转化为一次最小二乘拟合求:Y=A+bX,数据表格转化为:X=lnx4.06044.68215.01065.4293Y=lny4.47735.41615.89996.5323444∑Xk∑Yk∑(Xk−X)(Yk−Y)k=1k=1k=1X==4.7956,Y==5.5814,b==1.49984442∑(Xk−X)k=1A=Y−bX=−1.6108一次最小二乘拟合多项式为:Y=A+bX=−1.6108+1.4998X1.4998转化为原方程得未知数得方程:T=0.1997x,此即为所求得拟合曲线。 拟合的效果7006005004003004520010004060801001201401601802002202405.求形如asinx+bcosx的函数拟合如下数据:-3.0-1.50.01.53.0-0.1385-2.15870.83302.2774-0.5110解:φ=sinx,φ=cosx,ω=1,k=1,2,3,4,5问题变为求01k52p(x)=aφ0(x)+bφ1(x),使得∑(p(xk)−yk)=mink=1555⎧2⎪(∑φ0(xk))a+((∑φ1(xk)φ0(xk))b)=∑ykφ0(xk)⎪k=1k=1k=1相应得正规方程组为:⎨555⎪2(∑φ0(xk)φ1(xk))a+(∑φ1(xk))b=∑ykφ1(xk)⎪⎩k=1k=1k=1555522由于∑∑φ0(xk)=sin(xk)=2.0298,∑φ0(xk)φ1(xk)=∑sin(xk)cos(xk)=0,kk==11k=1k=1555522∑∑φ1(xk)=cos(xk)=2.9702,∑ykφ0(xk)=∑yksin(xk)=4.3724,kk==11k=1k=155∑ykφ1(xk)=∑ykcos(xk)=1.4844,k=1k=1⎧2.0298a+0b=4.3724正规方程组为:⎨,其解为:a=2.1541,b=0.4998。⎩0a+2.9702b=1.4844因此,所求的拟合函数为:p(x)=2.1541sinx+0.4998cosx 10006.求拟合函数p(x)=,拟合如下数据:bx1+ae012342004006508509501000解:令Y=ln(−1),X=x,A=ln1000,B=b,则数据表格转化为:yX=x012341000Y=ln(−1)1.38630.4055-0.6190-1.7346-2.9444y46问题变为求该组数据的一次最小二乘拟合:Y=A+Bx55计算X=∑Xk=2,Y=∑Yk=−0.7012,k=1k=15∑(Xk−X)(Yk−Y)k=1−10.8015B===−1.0802,A=Y−BX=1.45915210∑(Xk−X)k=1故一次最小二乘拟合多项式为:Y=1.4591−1.0802XA转化为原未知数:a=e=4.3021,b=B=−1.08021000所求拟合函数为:p(x)=−1.0802x1+4.3021e7.设(⋅,⋅)为内积空间Y中的内积,证明f=(f,f)为Y中的范数。证明:要证||f||为范数即需要证明下列范数公理:(1)齐次性:||αf||=|α|⋅||f||;(2)三角不等式:||f+g||≤||f||+||g||;(3)正定性:||f||≥0;||f||=0⇔f=0;bb222||αf||=(αf,αf)=∫ω(x)αf(x)=|α|∫ω(x)f(x)=|α|⋅||f||aa22||f+g||=(f+g,f+g)=(f,f)+2(f,g)+(g,g)≤||f||+2||f||⋅||g||+||g||=||f||+||g||∴||f+g||≤||f||+||g||,这里≤应用了Cauchy−Schwarz不等式。b22由||f||得定义易见||f||≥0,||f||=0⇔(f,f)=0⇔∫ω(x)f(x)⇔f(x)⇔f=0a得证。 8.证明性质5.2.3证明:必要性:设{}ϕ,ϕ,",ϕ于[a,b]线性无关,采用反证法。01n(ϕ,ϕ)(ϕ,ϕ)"(ϕ,ϕ)00010n(ϕ,ϕ)(ϕ,ϕ)"(ϕ,ϕ)10111n若行列式G(ϕ,ϕ,",ϕ)==0,01n##%#(ϕ,ϕ)(ϕ,ϕ)"(ϕ,ϕ)n0n1nnn***47于是,齐次方程组∑(ϕi,ϕj)cj=0,(i=0,1,",n)有非零解{c0,c1,",c0},j=0n**即存在不全为零解{cj}(j=0,1,",n)使得∑(ϕi,ϕj)cj=0,(i=0,1,",n)j=0nnn***记y=∑cjϕj(x),于是有(y,ϕi)=(∑cjϕj(x),ϕi)=∑cj(ϕj,ϕi)=0j=0j=0j=0nn**从而有,(y,y)=(y,∑cjϕj(x))=∑cj(y,ϕj)=0,故y≡0,当x∈[a,b]j=0j=0n**即存在不全为零的数{cj},使y=∑cjϕj(x)=0当x∈[a,b]j=0说明{ϕ,ϕ,",ϕ}于[a,b]线性相关,与假设矛盾,故G(ϕ,ϕ,",ϕ)≠0。12n01n充分性:设G(ϕ,ϕ,",ϕ)≠0,求证{ϕ,ϕ,",ϕ}于[a,b]线性无关。01n12n反证法:若{ϕ,ϕ,",ϕ}于[a,b]线性相关,于是,存在不全为零数c,c,"c,使12n01ncϕ(x)+cϕ(x)+"+cϕ(x)=0,x∈[a,b],对上式两边与ϕ(x)做内积得到0011nni⎧c0ϕ0(x)+c1ϕ1(x)+"+cnϕn(x)=0⎨⎩(i=1,2,",n)由于{c}不全为零,说明齐次方程组有非零解(c,c,"c),j01n故系数矩阵的行列式为零,即G(ϕ,ϕ,",ϕ)=0,与假设矛盾。01n9.证明拉盖尔多项式的正交性。证明: 210.求函数f(x)=1+x在[]0,1上的一次最佳平方逼近多项式。解:取通常基函数1,x求解。由教材对函数的最优平方逼近的分析得,正规方程组为:111⎧11⎧2a+a=(2+ln(1+2))a0∫1dx+a1∫xdx=∫1+xdx⎪0212⎪000⎪⎨111即:⎨3⎪22⎪111axdx+axdx=x1+xdx248⎩0∫∫010∫0⎪a0+a1=(2−1)⎩233解之得:a=0.934320,a=0.42694701所以该函数得一次最佳平方逼近多项式为:p(x)=0.934320+0.426947x11.求函数f(x)在区间[]a,b上的一次最佳平方逼近多项式。x(1)f(x)=e,[a,b]=[0,2];222⎧xa1dx+axdx=edx⎪0∫01∫0∫0解:做法同10题,正规方程组为⎨2222x⎪axdx+axdx=xedx⎩0∫∫010∫02⎧2a+2a=e−101⎪即:⎨82,解之得:a0=0.1945280,a1=3.00000002a+a=e+1⎪01⎩3所以该函数得一次最佳平方逼近多项式为:p(x)=0.1945280+3.0000000x11(2)f(x)=cosx+sin2x,[a,b]=[0,1]。23⎧11111a1dx+axdx=(cosx+sin2x)dx⎪⎪0∫01∫0∫023解:正规方程组为⎨⎪112111axdx+axdx=x(cosx+sin2x)dx⎪⎩0∫∫010∫023⎧1111a+a=+sin1−cos201⎪⎪2626即:⎨⎪1111a+a=(sin1+cos1−1)−(2cos2−sin2)⎪⎩2031212解之得:a=0.61092444,a=0.09167105301 所以该函数得一次最佳平方逼近多项式为:p(x)=0.61092444+0.091671053x12.利用正交多项式基函数求解11题中各小题。解:(a)作变量代换t=x−1(x=t+1),则区间[0,2]变为[−1,1],xt+1f(x)=e=e=y(t)。由于在区间[−1,1]上的正交多项式式勒让德多项式,故取基函数p(t)=1,p(t)=t。0111t+12t+1由(y,p)=edt=e−1;(y,p)=tedt=2;0∫−11∫−1491122(p,p)=dt=2;(p,p)=tdt=;00∫−111∫−132(y,p0)e−1(y,p1)3所以,a==,a==,01(p,p)2(p,p)40011故拟合函数为p(x)=a+at=a+a(x−1)≈0.1945280+3.0000000x0101t+1(b)作变量代换t=2x−1(x=),则区间[0,1]变为[−1,1],2111t+11f(x)=cosx+sin2x=cos+sin(t+1)=y(t)23223由于在区间[−1,1]上的正交多项式式勒让德多项式,故取基函数p(t)=1,p(t)=t。0111t+1111由(y,p)=[cos+sin(t+1)]dt=sin1−cos2+;0∫−12233311t+118(y,p)=t[cos+sin(t+1)]dt=sin1+2cos2−;1∫−122331122(p,p)=dt=2;(p,p)=tdt=;00∫−111∫−13118sin1−cos2+sin1+2cos2−(y,p0)33(y,p1)3所以,a==,a==01(p,p)2(p,p)2/30011故拟合函数为p(x)=a+at=a+a(2x−1)≈0.61092444+0.091671053x010113.利用正交多项式基函数求解例5.2.2。t+1解:作变量代换t=2x−1(x=),则区间[0,1]变为[−1,1],2 π(t+1)f(x)=sinπx=sin=y(t)2由于在区间[−1,1]上的正交多项式式勒让德多项式,故取基函数12p(t)=1,p(t)=t,p=(3t−1);01221π(t+1)41π(t+1)由(y,p)=sindt=;(y,p)=tsindt=00∫−11∫−12π2112π(t+1)4481(y,p)=(3t−1)sindt=−;(p,p)=dt=2;2∫−1300∫−122ππ5012211222(p,p)=tdt=;(p,p)=(3t−1)dt=11∫−133∫−1345(y,p0)2(y,p1)(y,p2)672所以,a==,a==0,a==−0123(p0,p0)π(p1,p1)(p2,p2)ππ故拟合函数为:222p(x)=a+at+at=a+a(2x−1)+a(2x−1)≈−0.050465+4.12251x−4.12251x012012−x14.利用三项递推公式求在区间[]0,+∞上带权ω(x)=e正交的一次、二次和三次多项式。−x解:带权ω(x)=e正交的一次多项式+∞+∞−x−x取g(x)=1,由于β=(xg,g)=edx=1,γ=(g,g)=edx=10000∫0000∫0∴g(x)=(x−β/γ)g(x)=x−11000+∞−x2−x带权ω(x)=e正交的二次多项式β=(xg,g)=x(x−1)edx=−3,111∫0+∞2−xγ=(g,g)=(x−1)edx=−1,111∫02∴g(x)=(x−β/γ)g(x)−γ/γg(x)=x−4x+22111100+∞−x22−x带权ω(x)=e正交的三次多项式β=(xg,g)=x(x−4x+2)edx=−6,222∫0+∞22−xγ=(g,g)=(x−4x+2)edx=−4,222∫032∴g(x)=(x−β/γ)g(x)−γ/γg(x)=x−9x+18x−63222211−x所以,在区间[]0,+∞上带权ω(x)=e正交的一次、二次和三次多项式分别为:g(x)=(x−β/γ)g(x)=x−11000 2g(x)=(x−β/γ)g(x)−γ/γg(x)=x−4x+2211110032g(x)=(x−β/γ)g(x)−γ/γg(x)=x−9x+18x−63222211315.求在区间[]0,2上带权ω(x)=1正交的一次和二次多项式,并利用它们求f(x)=x在[0,2]上的二次最佳平方逼近多项式。解:由正交多项式的定义求解251取g0(x)=1,g1(x)=x−α,由于要求(g0,g1)=(g1,g0)=∫(x−α)dx=00解得α=1,故所求的正交的一次多项式为g(x)=x−11222222由三递推公式:β=(xg,g)=x(x−1)dx=,γ=(g,g)=(x−1)dx=,111∫0111∫0332βγ2211γ=(g,g)=1dx=2,∴g(x)=(x−)g(x)−g(x)=x−2x+000∫2100γγ31022故所求的正交的一次多项式为g(x)=x−2x+233设f(x)=x在[]0,2上的二次最佳平方逼近多项式为:p(x)=ag(x)+ag(x)+ag(x)001122222222228(g,g)=1dx=2,(g,g)=(x−1)dx=,(g,g)=(x−2x+)dx=00∫011∫022∫0334523231223228(y,g)=xdx=4,(y,g)=x(x−1)dx=,(y,g)=x(x−2x+)dx=0∫01∫02∫05315(y,g)(y,g)(y,g)012a==2,a==3.6,a==3012(g,g)(g,g)(g,g)001122所以p(x)=2g(x)+3.6g(x)+3g(x)01216.证明fΔmaxf(x),∀f∈C[a,b]∞a≤x≤b定义了函数空间C[]a,b中的一种范数。证明:由范数的定义直接证明(1)||αf||=max|αf(x)|=|α||maxf(x)|=|α|||f||;∞∞a≤x≤ba≤x≤b(2)||f+g||=max|f+g|≤max|f|+max|g|=||f||+||g||;∞∞∞a≤x≤ba≤x≤ba≤x≤b (3)||f||=max|f|≥0,||f||=max|f|=0⇔f=0;证毕。∞∞a≤x≤ba≤x≤bx17.求函数f(x)=e在区间[]−1,1上的最优一致逼近一次多项式。解:设所求的最优一致逼近一次多项式为:p(x)=a+ax01由f""(x)在[]−1,1内不变号,故f"(x)单调,f"(x)−a在[−1,1]内只有一个零点,1记为x,则p"(x)−f"(x)=0⇒f"(x)=a2221根据最优一致逼近的几何意义,过(a,f(a)),(x,f(x))的中点,做平行于过(a,f(a))和22(b,f(b))的直线即为所求。52−1−1f(b)−f(a)e−exe−e∴f"(x)=e2=aa==,⇒x=ln1212b−a22f(a)+f(x2)f(b)−f(a)a+x2a=−⋅02b−a2f(a)+f(x)a+x22所求直线为:y=+a(x−)=1.2643+1.1752x12218.求函数f(x)=x在区间[]1/4,1上的最优一致逼近一次多项式。f(b)−f(a)2129解:理论分析同17题。a==,f"(x)==a=⇒x=1212b−a32x3162f(a)+f(x2)a+x2172所求直线为:y=+a(x−)=+x1228319.求下列函数在区间[]−1,1上的二次和三次切比雪夫插值逼近多项式。x(a)f(x)=e;(b)f(x)=sinx;解:(a)(i)切比雪夫插值逼近多项式的二次插值节点为~12k+1x=[(1+1)x+1−1]=xk=0,1,2,其中x=cosπ,k=0,1,2为T(x)的零点。kkkk326~~~计算得x=0.86603,x=0,x=-0.86603进行插值,表如下:012i012x0.866030-0.8663iy2.3780910.42050i造插商表:xf[x]f[x,x]f[x,x,x]iii−1ii−2i−1i 0.866032.37809011.59127-0.866030.420500.669150.53238可得牛顿型插值多项式,即相应的切比雪夫多项式为:p(x)=2.37809+1.59127(x−0.86603)+0.53238(x−0.86603)x2(ii)切比雪夫插值逼近多项式的三次插值节点为~12k+1x=[(1+1)x+1−1]=xk=0,1,2,3,其中x=cosπ,k=0,1,2,3为T(x)的零kkkk428点。53~~~~计算得x=0.92388,x=0.38268,x=-0.38268,x=-0.92387,0123进行插值,表如下:i0123x0.923880.38268-0.38268-0.92388iy2.519041.466210.682030.39698i造插商表:xf[x]f[x,x]f[x,x,x]f[x,x,x,x]iii−1ii−2i−1ii−3i−2i−1i0.923882.519040.382681.466211.94536-0.382680.682031.024590.70477-0.923880.396980.526700.381070.17518可得牛顿型插值多项式,即相应的切比雪夫多项式为:p(x)=2.51904+1.94536(x−0.92388)+0.70477(x−0.92388)(x−0.38268)3+0.17518(x−0.92388)(x−0.38268)(x+0.38268)(b)(i)切比雪夫插值逼近多项式的二次插值节点为~12k+1x=[(1+1)x+1−1]=xk=0,1,2,其中x=cosπ,k=0,1,2为T(x)的零点。kkkk326~~~计算得x=0.86603,x=0,x=-0.86603012进行插值,表如下:i012x0.866030-0.8663iy0.761760-0.76176i造插商表: xf[x]f[x,x]f[x,x,x]iii−1ii−2i−1i0.866030.76176000.87960-0.86603-0.761760.879600可得牛顿型插值多项式,即相应的切比雪夫多项式为:p(x)=0.76176+0.87960(x−0.86603)2(ii)切比雪夫插值逼近多项式的三次插值节点为~12k+154x=[(1+1)x+1−1]=xk=0,1,2,3,其中x=cosπ,k=0,1,2,3为T(x)的零kkkk428~~~~点。计算得x=0.92388,x=0.38268,x=-0.38268,x=-0.92387,0123进行插值,表如下:i0123x0.923880.38268-0.38268-0.92388iy0.797950.37341-0.373410.79795i造插商表:xf[x]f[x,x]f[x,x,x]f[x,x,x,x]iii−1ii−2i−1ii−3i−2i−1i0.923880.797950.382680.373410.78444-0.38268-0.373410.97578-0.14644-0.92388-0.797950.784440.14644-0.15851可得牛顿型插值多项式,即相应的切比雪夫多项式为:p(x)=0.79795+0.78444(x−0.92388)−0.14644(x−0.92388)(x−0.38268)3−0.15851(x−0.92388)(x−0.38268)(x+0.38268)20.求下列函数在区间[]1,3上的二次切比雪夫插值逼近多项式。1(a)f(x)=;(b)f(x)=xlnx.x解:令t=x−2则当x∈[1,3]时,t∈[−1,1]。11(a)f(x)===f(t),f(t)为[−1,1]内函数,故可用切比雪夫插值多项式逼近。xt+2切比雪夫插值逼近多项式的二次插值节点为~12k+1t=[(1+1)t+1−1]=tk=0,1,2,其中t=cosπ,k=0,1,2为T(x)的零点。kkkk326 ~~~计算得t=0.86603,t=0,t=-0.86603。进行插值,表如下:012i012t0.866030-0.8663iy0.348910.50.88186i造插商表:xf[x]f[x,x]f[x,x,x]iii−1ii−2i−1i0.866030.3489100.5-0.1744655-0.866030.88186-0.440930.15385可得牛顿型插值多项式,即相应的切比雪夫多项式为:p(t)=0.34891−0.17446(t−0.86603)+0.15385(t−0.86603)t2p(x)=0.34891−0.17446(x−2.86603)+0.15385(x−2.86603)(x−2)2(b)f(x)=(t+2)ln(t+2)=f(t)f(t)为[−1,1]内函数,故可用切比雪夫插值多项式逼近。切比雪夫插值逼近多项式的二次插值节点为~12k+1t=[(1+1)t+1−1]=tk=0,1,2,其中t=cosπ,k=0,1,2为T(x)的零点。kkkk326~~~计算得t=0.86603,t=0,t=-0.86603。进行插值,表如下:012i012t0.866030-0.8663iy3.017721.386290.14257i造插商表:xf[x]f[x,x]f[x,x,x]iii−1ii−2i−1i0.866033.0177201.386291.88380-0.866030.142571.436120.25847可得牛顿型插值多项式,即相应的切比雪夫多项式为:p(t)=3.01772+1.88380(t−0.86603)+0.25847(t−0.86603)t2p(x)=3.01772+1.88380(x−2.86603)+0.25847(x−2.86603)(x−2)2x21.利用切比雪夫级数截断,求f(x)=e在区间[−1,1]上的n(n=1,2,3)次逼近多项式。1π1πcosθ解:按照切比雪夫级数系数的计算公式得a=f(cosθ)dθ=edθ=1.266070∫0∫0ππ 1π1πcosθa=f(cosθ)cosθdθ=ecosθdθ=1.130321∫0∫0ππ1π1πcosθa=f(cosθ)cos2θdθ=ecos2θdθ=0.271502∫0∫0ππ1π1πcosθa=f(cosθ)cos3θdθ=ecos3θdθ=0.044343∫0∫0ππx所以f(x)=e在区间[−1,1]上的n(n=1,2,3)次逼近多项式依次为p(x)=1.26607T+1.13032T=1.26607+1.13032x101256p2(x)=1.26607T0+1.13032T1+0.27150T2=0.94457+1.13032x+0.54300xp(x)=1.26607T+1.13032T+0.27150T+0.04434T3012323=0.94457+0.99731x+0.54300x+0.177735xx22.利用缩短幂基数方法,将函数f(x)=e的泰勒展开逼近多项式12131415161+x+x+x+x+x+x2624120720x降幂,使得其与函数f(x)=e的误差不超过0.005。1213141516解:令p(x)=1+x+x+x+x+x+x62624120720xxe−4用p(x)作为e得近似,误差为max|e−p(x)|≤<5.3934×1066−1≤x≤17!记p(x)为p(x)缩短幂级数所得到得5次多项式,同理有p(x),p(x)6,566,46,3xp(x)缩短幂级数得到p(x)与e的误差为:66,5xx−41max|e−p|≤max|e−p|+max|p−p|=5.3934×10+≤0.0056,5666,55−1≤x≤1−1≤x≤1−1≤x≤16!×26163492151535由于x=T(x)+x−x+,x=T(x)+x−x,53221632164161111则p(x)=p(x)+×T(x)+×T(x)66,4561201672032234得p(x)=1.0000434+0.9973958x+0.4996094x+0.1770833x+0.043750x6,4x用p作为e的逼近多项式其误差为6,4 x−411max|e−p(x)|≤5.3934×10++≈0.0011<0.0055,445−1≤x≤15!×26!×24121若再用x=T(x)+x−代入p(x)可以求得46,48823p(x)=0.994575+0.997396x+0.542969x+0.177083x6,3x用其作为e的逼近多项式的误差为x−4111max|e−p(x)|≤5.3934×10+++≈0.00631>0.0055,3345−1≤x≤14!25!×26!×257不合题意。故所求得逼近多项式为234p(x)=1.0000434+0.9973958x+0.4996094x+0.1770833x+0.043750x6,423.求函数f(x)=sinx在区间[]−1,1上的Pade′逼近,其中n=3,n=2。并将结果与四阶泰勒多项式相比较。23p+px+px+px0123解:设所求的有理分式为r(x)=,21+qx+qx12∞2m−1m+1xsinx的麦克劳林级数为∑(−1),令m=1(2m−1)!352m−1xxmx223(x−++"+(−1)+")(1+qx+qx)−(p+px+px+px)1201233!5!(2m−1)!k中x的系数分别为零,其中k=0,1,",5。有012x:−p=0,x:1−p=0,x:q−p=0,0112314q15q21x:q−−p=0,x:−=0,x:−+=0。233!3!3!5!⎧p0=0⎪73p1=1⎧q1=01−x⎪⎪⎪60求解得⎨p=0,⎨1,故得有理分式逼近r(x)=2q=1⎪⎪21+x27⎩20⎪p=−20⎪⎩360 两种逼近的误差比较0.01实线表示泰勒逼近0.008虚线表示有理分式逼近0.0060.0040.002y0-0.00258-0.004-0.006-0.008-0.01-1-0.8-0.6-0.4-0.200.20.40.60.81x24.求函数f(x)=sinx在区间[]−1,1上的切比雪夫有理分式逼近pT(x)+pT(x)0011r(x)=并和习题3中的结果相比较。T(x)+qT(x)+qT(x)01122解:由于f(x)是奇函数,故在切比雪夫级数展开中有a=0(k=0,1,2,"),2k∞即f(x)=∑a2k+1T2k+1(x)k=0π21f(x)T2k+1(x)2π其中,a=dx=2sin(sinθ)cos(2k+1)(−θ)dθ2k+1∫−12∫−ππ1+xπ22kπ(−1)4=∫2sin(sinθ)sin(2k+1)θdθπ0π4∴a=2sin(sinθ)sinθdθ=0.880101171489871∫π0π−4a=2sin(sinθ)sin3θdθ=−0.039126707965343∫π0π42-4a=sin(sinθ)sin5θdθ=4.995154604330310×105∫π0设f(x)=sinx=aT(x)+aT(x)+aT(x)+"113355可得[aT(x)+aT(x)+aT(x)+aT(x)+"][T(x)+qT(x)+qT(x)]1133557701122−[pT(x)+pT(x)]0011 2=aT(x)T(x)+aqT(x)+aqT(x)T(x)1101111212+aT(x)T(x)+aqT(x)T(x)+aqT(x)T(x)33031313232+aT(x)T(x)+aqT(x)T(x)+aqT(x)T(x)55051515252+aT(x)T(x)+aqT(x)T(x)+aqT(x)T(x)77071717272+"−[pT(x)+pT(x)]0011aqaq1112=aT(x)+[T(x)+T(x)]+[T(x)+T(x)]11203122aqaq313259+aT(x)+[T(x)+T(x)]+[T(x)+T(x)]33425122aqaq5152+aT(x)+[T(x)+T(x)]+[T(x)+T(x)]55647322aqaq7172+aT(x)+[T(x)+T(x)]+[T(x)T(x)]77869522+"−[pT(x)+pT(x)]0011aqaqaqaqaq1112321131=(−p)T(x)+(a++−p)T(x)+(+)T(x)00111222222aqaq1252+(+a+)T(x)+"3322故得⎧a1q1−p=0⎪02⎪⎪a1q2a3q2⎧q=0⎧p=0a1++−p1=010⎪⎪22⎪⎪⎨,解之得⎨2a3,⎨a1+a3⎪a1q1+a3q1=0⎪q2=−⎪p1=a1−a3a+aa+a⎪⎩15⎩1522⎪aqaq⎪12+a+52=0⎪⎩2320.91747T1(x)0.91747x因此逼近函数为r(x)==2T0(x)+0.088914T2(x)0.911086+0.177828x -3两种逼近的误差比较x101.5实线表示pade逼近虚线表示切比雪夫有理分式逼近10.5y060-0.5-1-1.5-1-0.8-0.6-0.4-0.200.20.40.60.81x所以,函数f(x)=sinx在区间[]−1,1上的Pade′逼近比切比雪夫有理分式逼近效果要好. 第六章11.已知函数fx()=在点x=1.0,1.1,1.2处的函数值(见下表),试用两点和三微分2(1+x)公式求f()x在点x=1.1处的导数值,并估计误差。x1.01.11.2if()x0.2500000.2267570.206612iff(1.1)−(1.0)解:由二点数值微分公式可得:f"(1.1)≈=−0.23243,其误差为:0.0161.11.0−61ff(1.2)−(1.1)f"(1.1)≈=−0.20145,其误差为:0.0151.21.1−ff(1.2)−(1.0)由三点数值微分公式可得:f"(1.1)≈=−0.21694,其误差为:0.000981.21.0−π2.已知定积分∫sinxdx的近似值:0hhhNh()1.570769=,N()1.896119=,N()1.974232=,N()1.993570=0000248其中近似公Nh()有截断误差渐近展开式0π246sinxdxNhK−=+++()hKhKh"试列表外推计算Nh()∫012330hNN()−()hhkk−−112解:由截断误差渐近展开式可构造外推公式:NhN()=+()kk−12k22−1234Oh()Oh()Oh()Oh()1.5707961.8961192.004561.9742321.9221571.916661.9935701.9806781.984581.985183.分析二阶数值微分公式21h(4)fx""()=−(yyy2+)−f()ζ的整体误差并依此确定最佳步长h10212h12 24εM4h(4)48ε解:不超过+,其中M=maxfx(),最佳步长h≈424h12xxx02≤≤M4b234.计算弦长∫1("())+fxdx,其中(1)fxxab()==,[,][0,1];aπx(2)fx()sin,[,][0,];==xab(3)fxeab()==,[,][0,1];462bn解:利用Newto-Cotes求积公式I[]ff=≈∫()xdxQ[]fA=∑iif()xai=0bn1xx−j22其中:Ai=∫∏dx,(1)弦长为:∫1(3)+≈xdx1.54786aji≠xxij−0j=0112x2(2)弦长为:∫1(cos)+≈xdx1.0581,(3)弦长为:∫1()+≈edx2.00350025.计算旋转体的侧面积2(π∫fxf)1+("(x))dx,其中f()x同习题4bn解:利用Newto-Cotes求积公式I[]ff=≈∫()xdxQ[]fA=∑iif()xai=0bn1xx−j34其中:Ai=∫∏dx,(1)旋转体的侧面积为:2π∫xx19+=dx3.56312aji≠xxij−0j=012(2)旋转体的侧面积为:2π∫sinxx1cos+=dx2.4224301xx2(3)旋转体的侧面积为:2π∫ee1+=dx14.194306.分别用定步长和变步长梯形求积公式计算积分 1sinx1−3Si(1)=∫dx,使误差不超过×10x201sinx(提示:利用关系f()xt==∫cosxdt估计导函数的界)x0解:(1)利用复化梯形求积公式计算,由误差公式知:222hh−−+ηηηηsin2cos2sinη12R[]fb=−(−a)""()fη=−(10)−