• 1.26 MB
  • 2022-04-29 14:02:51 发布

分析化学下册答案(华中师大版《仪器分析》作业题参考答案完整版).doc

  • 55页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'第一章绪论1.解释下列名词:(1)仪器分析和化学分析;(2)标准曲线与线性范围;(3)灵敏度、精密度、准确度和检出限。答:(1)仪器分析和化学分析:以物质的物理性质和物理化学性质(光、电、热、磁等)为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。(2)标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称为该方法的线性范围。(3)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。2.对试样中某一成分进行5次测定,所得测定结果(单位mg×mL-1)分别为0.36,0.38,0.35,0.37,0.39。(1)计算测定结果的相对标准偏差;(2)如果试样中该成分的真实含量是0.38mg×mL-1,试计算测定结果的相对误差。解:(1)测定结果的平均值mg×mL-1标准偏差相对标准偏差(2)相对误差。3.用次甲基蓝-二氯乙烷光度法测定试样中硼时,为制作标准曲线,配制一系列质量浓度rB(单位mg×L-1)分别为0.5,1.0,2.0,3.0,4.0,5.0的标准溶液,测得吸光度A分别为0.140,0.160,0.280,0.380,0.410,0.540。试写出该标准曲线的一元线性回归方程,并求出相关系数。55/55 解:已知线性回归方程为其中一元线性回归方程为。代入数据可求得相关系数或。1.下面是确定某方法测定铁的检出限的一组数据:空白信号(相对单位)为5.6,5.8,6.2,5.2,5.3,5.6,5.7,5.6,5.9,5.6,5.7;10ng×mL-1铁标准溶液信号(相对单位)为10.6,10.8,10.6。试计算此方法测定铁的检出限。解:检出限55/55 其中该方法测定铁的检出限为。55/55 第二章光学分析法导论1.解释下列名词:(1)原子光谱和分子光谱;(2)原子发射光谱和原子吸收光谱;(3)统计权重和简并度;(4)分子振动光谱和分子转动光谱;(5)禁戒跃迁和亚稳态;(6)光谱项和光谱支项;(7)分子荧光、磷光和化学发光;(8)拉曼光谱。答:(1)由原子的外层电子能级跃迁产生的光谱称为原子光谱;由分子的各能级跃迁产生的光谱称为分子光谱。(2)当原子受到外界能量(如热能、电能等)的作用时,激发到较高能级上处于激发态。但激发态的原子很不稳定,一般约在10-8s内返回到基态或较低能态而发射出的特征谱线形成的光谱称为原子发射光谱;当基态原子蒸气选择性地吸收一定频率的光辐射后跃迁到较高能态,这种选择性地吸收产生的原子特征的光谱称为原子吸收光谱。(3)由能级简并引起的概率权重称为统计权重;在磁场作用下,同一光谱支项会分裂成2J+1个不同的支能级,2J+1称为能级的简并度。(4)由分子在振动能级间跃迁产生的光谱称为分子振动光谱;由分子在不同的转动能级间跃迁产生的光谱称为分子转动光谱。(5)不符合光谱选择定则的跃迁叫禁戒跃迁;若两光谱项之间为禁戒跃迁,处于较高能级的原子具有较长的寿命,原子的这种状态称为亚稳态。(6)用n、L、S、J四个量子数来表示的能量状态称为光谱项,符号为n2S+1L;把J值不同的光谱项称为光谱支项,表示为n2S+1LJ。(7)荧光和磷光都是光致发光,是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态而产生的二次辐射。荧光是由单重激发态向基态跃迁产生的光辐射,而磷光是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁而产生的光辐射。化学发光是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。(8)入射光子与溶液中试样分子间的非弹性碰撞引起能量交换而产生的与入射光频率不同的散射光形成的光谱称为拉曼光谱。2.阐明光谱项中各符号的意义和计算方法。答:光谱项表示为n2S+1L,其中n为主量子数,其数值等于原子的核外电子层数;S为总自旋量子数,若N为原子的价电子数,S可取,,,…,,0;L为总轨道角量子数,对于具有两个价电子的原子,L只能取值,,,…,。3.计算:(1)670.7nm锂线的频率;(2)3300cm-1谱线的波长;(3)钠588.99nm共振线的激发电位。解:(1)55/55 (2)(3)1.电子能级间的能量差一般为1~20eV,计算在1eV,5eV,10eV和20eV时相应的波长(nm)。解:已知1eV时,5eV时,10eV时,20eV时,。2.写出镁原子基态和第一电子激发态的光谱项。解:光谱项分别为:基态31S;第一电子激发态31P和33P。55/55 第三章紫外-可见吸收光谱法1、已知丙酮的正己烷溶液的两个吸收峰138nm和279nm分别属于л→л*跃迁和n→л*跃迁,试计算л、n、л*轨道间的能量差,并分别以电子伏特(ev),焦耳(J)表示。解:对于л→л*跃迁,λ1=138nm=1.38×10-7m则ν=νC=C/λ1=3×108/1.38×10-7=2.17×1015s-1则E=hv=6.62×10-34×2.17×1015=1.44×10-18JE=hv=4.136×10-15×2.17×1015=8.98ev 对于n→л*跃迁,λ2=279nm=2.79×10-7m 则ν=νC=C/λ1=3×108/2.79×10-7=1.08×1015s-1则E=hv=6.62×10-34×1.08×1015=7.12×10-19JE=hv=4.136×10-15×1.08×1015=4.47ev答:л→л*跃迁的能量差为1.44×10-18J,合8.98ev;n→л*跃迁的能量差为7.12×10-19J,合4.47ev。 3、作为苯环的取代基,-NH3+不具有助色作用,-NH2却具有助色作用;-DH的助色作用明显小于-O-。试说明原因。答:助色团中至少要有一对非键电子n,这样才能与苯环上的л电子相互作用产生助色作用,由于-NH2中还有一对非键n电子,因此有助色作用,而形成-NH3+基团时,非键n电子消失了,则助色作用也就随之消失了。由于氧负离子O-中的非键n电子比羟基中的氧原子多了一对,因此其助色作用更为显著。 4、铬黑T在PH<6时为红色(=515nm),在PH=7时为蓝色(=615nm),PH=9.5时与Mg2+形成的螯合物为紫红色(=542nm),试从吸收光谱产生机理上给予解释。(参考书P23)解:由于铬黑T在PH<6、PH=7、PH=9.5时其最大吸收波长均在可见光波长范围内,因此所得的化合物有颜色,呈吸收波长的互补色。由于当PH<6到PH=7到PH=9.5试,最大吸收波长有=515nm到=615nm到=542nm,吸收峰先红移后蓝移,因此铬黑T在PH<6时为红色,PH=7时为蓝色,PH=9.5时为紫红色。 55/55 5、4-甲基戊烯酮有两种异构体:(左图)和 实验发现一种异构体在235nm处有一强吸收峰(K=1000L•mol-1•cm-1),另一种异构体在220nm以后没有强吸收峰,试判断具有前一种紫外吸收特征的是哪种异构体。解:有紫外光谱分析可知,若在210-250nm有强吸收,则表示含有共轭双键,因此,由于在235nm处有一强吸收,则表明其结构含有共轭双键,因此这种异构体应为(左图)。 若在220-280nm范围内无吸收,可推断化合物不含苯环、共轭双键、酮基、醛基、溴和碘,由于另一种异构体在220nm以后没有强吸收,则此化合物不含共轭双键,因此应为:  55/55 第四章红外吸收光谱法3、CO的红外吸收光谱在2170cm-1处有一振动吸收峰。试求CO键的力常数。解:根据则其中=1.14×10-23g=1.14×10-26Kg则=(2×3.14×3×108×2.17×105)2×1.14×10-26=1905N/m=19.05N/cm答:CO键的力常数19.05N/cm。 5、指出下列各种振动形式中,哪些是红外活性振动,哪些是非红外活性振动。分子结构振动形式(1)CH3-CH3 γ(C-C)(2)CH3—CCl3γ(C-C)(3)SO2γs,γas(4)(a)(CH)(b)(CH)(c)W(CH)(d)(CH) 解:只有发生使偶极矩有变化的振动才能吸收红外辐射,即才是红外活性的,否则为红外非活性的。也即只有不对称的振动形式才是红外活性的,对称的振动则为红外非活性的。因此,上述结构中: 红外活性振动有:(2)CH3—CCl3γ(C-C)(3)SO2γs,γas(伸缩振动)(4)中的(a)(CH)、(c)W(CH)非红外活性的有:(1)CH3-CH3(CH)(4)中的(b)(CH) (d)(CH), 55/55 6、和是同分异构体,试分析两者红外光谱的差异。答:由于中含有一个-OH基团,因此在红外光谱中有一强吸收峰在3700~3100cm-1,且此分子中含有一个C=C双键,因此在1680~1620cm-1也有一较弱的吸收峰。红外光谱中有2个特征峰,而中只含有一个C=O特征官能团,因此反映在红外光谱中则在1850~1600cm-1有一强吸收峰,即的红外光谱只有一个特征吸收峰 7、化合物的分子式为C3H6O2,红外光谱如4-11所示。解析改化合物的结构。答:①由于化合物的分子式C3H6O2符合通式CnH2nO2,根据我们所学知识可初步判断此化合物为酸或者酯。②由于谱带在1730cm-1处有一强吸收峰,此处落于C=O的1850~1600cm-1的振动区间,因此可判断改化合物含有C=O官能团。1730cm-1处的吸收峰表明此物质为饱和酯峰。③图表在1300~1000cm-1范围内也有一系列特征吸收峰,特别在1200cm-1处有一强吸收峰,符合C-O的振动范围,因此可判断改化合物含有C-O键。④图谱中在2820,2720cm-1处含有吸收峰,符合-CH3,-CH2对称伸缩范围,因此可判断化合物中含有-CH3基团和-CH2基团。综上所述,此化合物的结构式应为:COHOH2CCH355/55 第五章分子发光分析法1.解释下列名词:(1)振动弛豫;(2)内转化;(3)体系间窜跃;(4)荧光激发光谱;(5)荧光发射光谱;(6)重原子效应;(7)猝灭效应。答:(1)振动弛豫是在同一电子能级中,分子由较高振动能级向该电子态的最低振动能级的非辐射跃迁。(2)内转化是相同多重态的两个电子态之间的非辐射跃迁。(3)体系间窜跃是指不同多重态的两个电子态间的非辐射跃迁。(4)以不同波长的入射光激发荧光物质,并在荧光最强的波长处测量荧光强度,以激发波长为横坐标,荧光强度为纵坐标绘制关系曲线得到的光谱即为荧光激发光谱。(5)固定激发光的波长和强度不变,测量不同波长下的荧光强度,绘制荧光强度随波长变化的关系曲线即得到荧光发射光谱。(6)使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。(7)猝灭效应是指荧光物质分子与溶剂分子或溶质分子之间所发生的导致荧光强度下降的物理或化学作用过程。2.简述影响荧光效率的主要因素。答:(1)分子结构的影响:发荧光的物质中都含有共轭双键的强吸收基团,共轭体系越大,荧光效率越高;分子的刚性平面结构利于荧光的产生;取代基对荧光物质的荧光特征和强度有很大影响,给电子取代基可使荧光增强,吸电子取代基使荧光减弱;重原子效应使荧光减弱。(2)环境因素的影响:溶剂的极性对荧光物质的荧光强度产生影响,溶剂的极性越强,荧光强度越大;温度对溶液荧光强度影响明显,对于大多数荧光物质,升高温度会使非辐射跃迁引起的荧光的效率降低;溶液pH值对含有酸性或碱性取代基团的芳香族化合物的荧光性质有影响;表面活性剂的存在会使荧光效率增强;顺磁性物质如溶液中溶解氧的存在会使荧光效率降低。3.试从原理和仪器两方面比较吸光光度法和荧光分析法的异同,说明为什么荧光法的检出能力优于吸光光度法。答:(1)在原理方面:两者都是吸收一定的光辐射能从较低的能级跃迁到较高的能级,不同的是,吸光光度法测量的是物质对光的选择性吸收,而荧光分析法测量的是从较高能级以无辐射跃迁的形式回到第一电子激发态的最低振动能级,再辐射跃迁到电子基态的任一振动能级过程中发射出的荧光的强度。(2)在仪器方面:仪器的基本装置相同,不同的是吸光光度法中样品池位于光源、单色器之后,只有一个单色器,且在直线方向测量,而荧光分析法中采用两个单色器,激发单色器(在吸收池前)和发射单色器(在吸收池后),且采用垂直测量方式,即在与激发光相垂直的方向测量荧光。(3)荧光分析法的检出能力之所以优于吸光光度法,是由于现代电子技术具有检测十分微弱光信号的能力,而且荧光强度与激发光强度成正比,提高激发光强度也可以增大荧光强度,使测定的灵敏度提高。而吸光光度法测定的是吸光度,不管是增大入射光强度还是提高检测器的灵敏度,都会使透过光信号与入射光信号以同样的比例增大,吸光度值并不会改变,因而灵敏度不能提高,检出能力就较低。4.试从原理和仪器两方面比较荧光分析法、磷光分析法和化学发光分析法。55/55 答:(1)在原理方面:荧光分析法和磷光分析法测定的荧光和磷光是光致发光,均是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,测量的是由激发态回到基态产生的二次辐射,不同的是荧光分析法测定的是从单重激发态向基态跃迁产生的辐射,磷光分析法测定的是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的辐射,二者所需的激发能是光辐射能。而化学发光分析法测定的是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射,所需的激发能是化学能。(2)在仪器方面:荧光分析和磷光分析所用仪器相似,都由光源、激发单色器、液槽、发射单色器、检测器和放大显示器组成。由于在分析原理上的差别,磷光分析仪器有些特殊部件,如试样室、磷光镜等。而化学发光分析法所用仪器不同,它不需要光源,但有反应器和反应池及化学反应需要的恒温装置,还有与荧光和磷光分析仪器相同的液槽、单色器、检测器等。1.如何区别荧光和磷光?其依据是什么?答:为了区别磷光和荧光,常采用一种叫磷光镜的机械切光装置,利用荧光和磷光寿命的差异消除荧光干扰或将磷光和荧光分辨开。2.采取哪些措施可使磷光物质在室温下有较大的磷光效率?答:(1)在试液中加入表面活性剂,;(2)将被分析物吸附在固体的表面。3.化学发光反应要满足哪些条件?答:(1)能快速地释放出足够的能量;(2)反应途径有利于激发态产物的形成;(3)激发态分子能够以辐射跃迁的方式返回基态,或能够将其能量转移给可以产生辐射跃迁的其它分子。4.简述流动注射式化学发光分析法及其特点。答:流动注射分析是一种自动化溶液分析技术,它是基于把一定体积的液体试样注射到一个连续流动着的载流中,试样在流动过程中分散、反应,并被载流带到检测器中,再连续记录其光强、吸光度、电极电位等物理参数。其特点是,具有很高的灵敏度和很好的精密度。55/55 第六章原子发射光谱法1.何谓共振线、灵敏线、最后线和分析线?它们之间有什么联系?答:以基态为跃迁低能级的光谱线称为共振线;灵敏线是指元素特征光谱中强度较大的谱线,通常是具有较低激发电位和较大跃迁概率的共振线;最后线是指试样中被测元素含量或浓度逐渐减小时而最后消失的谱线,最后线往往就是最灵敏线;分析线是分析过程中所使用的谱线,是元素的灵敏线。2.解释下列名词:(1)原子线和离子线;(2)等离子体及ICP炬;(3)弧焰温度和电极头温度;(4)谱线的自吸和自蚀;(5)反射光栅和光栅常数;(6)线色散率和分辨率;(7)闪耀角和闪耀波长;(8)谱线的强度和黑度;(9)内标线和分析线对;(10)标准加入法。答:(1)原子线是原子被激发所发射的谱线;离子线是离子被激发所发射的谱线。(2)近代物理学中,把电离度(a)大于0.1%、其正负电荷相等的电离气体称为等离子体;ICP炬是指高频电能通过电感(感应线圈)耦合到等离子体所得到的外观上类似火焰的高频放电光源。(3)弧焰温度即为激发温度,电极头温度即为蒸发温度。(4)当原子发射的辐射从弧焰中心穿过弧层射出时,被其自身的基态原子所吸收而使谱线中心强度减弱的现象称为谱线的自吸;自吸严重时会使谱线从中央一分为二,这种现象称为自蚀。(5)在光学玻璃或金属高抛光表面上,准确地刻制出许多等宽、等距、平行的具有反射面的刻痕,称为反射光栅;光栅常数是相邻两刻痕间的距离,即为光栅刻痕密度b(mm-1)的倒数。(6)线色散率表示具有单位波长差的两条谱线在焦平面上分开的距离;分辨率是根据瑞利准则分辨清楚两条相邻光谱线的能力。(7)闪耀光栅刻痕小反射面与光栅平面的夹角i称为闪耀角;闪耀角所对应辐射能量最大的波长称为闪耀波长。(8)谱线的强度常用辐射强度I(J×s-1×m-3)表示,即单位体积的辐射功率,是群体光子辐射总能量的反映;谱线的黑度S是谱线透射比倒数的对数。(9)在基体元素(或定量加入的其它元素)的谱线中选一条谱线为比较线,又称为内标线。在被测定元素的谱线中选一条灵敏线作为分析线,所选用的分析线与内标线组成分析线对。(10)标准加入法是当测定的元素含量很低时,或者试样基体组成复杂、未知时,通过加入已知的不同量或不同浓度的待测元素的标样或标准溶液来测定待测元素含量的方法。3.推导出原子线和离子线强度与原子总密度的关系式,并讨论影响谱线强度的主要因素。答:,影响谱线强度的主要因素有(1)激发电位(Ei),与谱线强度是负指数关系,Ei越低,谱线强度越大;(2)跃迁几率(Aij),与谱线强度成正比;(3)统计权重g,与谱线强度成正比;(4)原子总密度(N),与谱线强度成正比;(5)激发温度,主要影响电离度a,存在最佳激发温度。4.谱线自吸对光谱定量分析有何影响?答:在光谱定量分析中,自吸现象的出现,将严重影响谱线的强度,限制可分析的含量范围。55/55 1.激发光源的作用是什么?对其性能有何具体要求?答:激发光源的作用是提供试样蒸发、解离和激发所需要的能量,并产生辐射信号;对激发光源的要求是:激发能力强,灵敏度高,稳定性好,结构简单,操作方便,使用安全。2.常用的激发光源有哪几种类型?简述工作原理和基本特点。答:目前常用的激发光源有(1)直流电弧光源,其工作原理是:直流电弧被高频引燃装置引燃,阴极产生热电子发射,电子在电场作用下高速奔向阳极,炽热的阳极斑使试样蒸发、解离,解离的气态原子与电子碰撞激发并电离,形成的正离子撞击阴极,阴极不断发射电子,这样电极间形成等离子体,并维持电弧放电,气态原子、离子与等离子体中其它粒子碰撞激发,产生原子、离子的发射光谱;其特点是,电极温度高,分析的绝对灵敏度高,电弧温度一般可达4000~7000K,激发能力强,但放电的稳定性差,定量分析的精密度不高,适用于矿物和难挥发试样的定性、半定量及痕量元素的分析。(2)低压交流电弧光源,其工作原理是:为了维持交流电弧放电,发生器由高频高压引燃电路和低压电弧电路组成。电源接通后,高频高压电路使分析间隙的空气电离,形成等离子气体导电通道,引燃电弧。同时,低压交流电经低频低压电弧电路在分析间隙产生电弧放电。随着分析间隙电流增大,出现明显的电压降,当电压降低于维持放电所需电压使,电弧即熄灭。每交流半周都以相同步骤用高频高压电流引燃一次,反复进行此过程可使低压交流电弧维持不灭。其特点是:弧焰温度可达4000~8000K,激发能力强,但电极温度低,其蒸发能力稍差,光源稳定性较好,定量分析的精密度较高,广泛用于金属、合金中低含量元素的定量分析。(3)高压火花光源,其工作原理是:高压火花发生器使电容器储存很高的能量,产生很大电流密度的火花放电,放电后的电容器的两端电压下降,在交流电第二个半周时,电容器又重新充电、再放电。反复进行充电、放电以维持火花持续放电。其特点是:电极温度低,灵敏度低,火花温度高,可激发难激发元素,光源稳定性好,适用于低熔点金属和合金的定量分析。(4)电感耦合等离子体光源,其工作原理是:用高频火花引燃时,部分Ar工作气体被电离,产生的电子和氩离子在高频电磁场中被加速,它们与中性原子碰撞,使更多的工作气体电离,形成等离子体气体。导电的等离子体气体在磁场作用下感生出的强大的感生电流产生大量的热能又将等离子体加热,使其温度达到1´104K,形成ICP放电。当雾化器产生的气溶胶被载气导入ICP炬中时,试样被蒸发、解离、电离和激发,产生原子发射光谱。其特点是:激发温度高,一般在5000~8000K,利于难激发元素的激发,对各元素有很高的灵敏度和很低的检出限,ICP炬放电稳定性很好,分析的精密度高,ICP光源的自吸效应小,可用于痕量组分元素的测定,但仪器价格贵,等离子工作气体的费用较高,对非金属元素的测定灵敏度较低。3.分析下列试样应选用何种光源?(1)矿石中元素的定性和半定量分析;(2)铜合金中的锡();(3)钢中的猛();(4)污水中的Cr、Cu、Fe、Pb、V的定量分析;(5)人发中Cu、Mn、Zn、Cd、Pb的定量分析。答:(1)直流电弧光源;(2)低压交流电弧光源;(3)低压交流电弧光源;(4)电感耦合等离子体(ICP)光源;(5)电感耦合等离子体(ICP)光源。4.简述ICP光源的工作原理及其分析性能。55/55 答:其工作原理是:用高频火花引燃时,部分Ar工作气体被电离,产生的电子和氩离子在高频电磁场中被加速,它们与中性原子碰撞,使更多的工作气体电离,形成等离子体气体。导电的等离子体气体在磁场作用下感生出的强大的感生电流产生大量的热能又将等离子体加热,使其温度达到1´104K,形成ICP放电。当雾化器产生的气溶胶被载气导入ICP炬中时,试样被蒸发、解离、电离和激发,产生原子发射光谱。其分析性能是:激发温度高,一般在5000~8000K,利于难激发元素的激发,对各元素有很高的灵敏度和很低的检出限,ICP炬放电稳定性很好,分析的精密度高,ICP光源的自吸效应小,可用于痕量组分元素的测定,但仪器价格贵,等离子工作气体的费用较高,对非金属元素的测定灵敏度较低。1.简述ICP光源中元素被激发的机理。答:在ICP放电中,除了有很高粒子密度的电子和氩离子外,还有很高密度的亚稳态氩原子,它是由较高能态的氩原子通过光辐射或与电子碰撞产生这样,在Ar-ICP中,被测定物质的原子(M)的激发和电离除了与电子、氩离子碰撞激发、电离外,还与激发态氩粒子(Ar*、、Arm)发生碰撞电离。在在Ar-ICP放电中,被测定物质的原子和离子的激发模型可归纳为(1)与电子碰撞热激发(2)离子-电子复合(3)潘宁电离激发(4)电荷转移激发(5)辐射激发反应式中M*、M+、M+*分别代表被测定元素的激发态原子、离子和激发态离子。2.光谱仪由哪几个基本部分组成?各部分的主要作用是什么?答:光谱仪基本上都由四个部分组成:(1)照明系统,主要作用是使光源发射的光均匀而有效地照明入射狭缝,使感光板上的谱线黑度均匀;(2)准光系统,主要作用是使不平行的复合光变成平行光投射到色散棱镜上;(3)色散系统,主要作用是将入射光色散成光谱;(4)记录系统,主要作用是把色散后的元素光谱记录在感光板上。3.乳剂特性曲线在光谱定量分析中有何作用?答:(1)了解感光板的性质;(2)选择合适的曝光时间;(3)选择合适的浓度范围;(4)由S值推算lgI。4.简述光栅色散原理。55/55 答:光栅的色散原理是光在刻痕小反射面上的衍射和衍射光的干涉作用。一束均匀的平行光射到平面光栅上,光就在光栅每条刻痕的小反射面上产生衍射光,各条刻痕同一波长的衍射光方向一致,经物镜聚合并在焦平面上发生干涉。衍射光相互干涉的结果,使光程差与衍射光波长成整数倍的光波互相加强,得到亮条纹,即该波长单色光的谱线。1.简述光谱定性分析基本原理和基本方法。答:由于各种元素的原子结构不同,在激发光源的作用下,可以得到各种元素的一系列特征谱线。在光谱定性分析中,一般只要在试样光谱中鉴别出2~3条元素的灵敏线,就可以确定试样中是否存在被测元素。通常采用两种方法:(1)标准光谱图比较法,又叫铁光谱比较法,定性分析时,将纯铁和试样并列摄谱于同一感光板上。将谱板在映谱仪上放大20倍,使纯铁光谱与标准光谱图上铁光谱重合,若试样光谱上某些谱线和图谱上某些元素谱线重合,就可确定谱线的波长及所代表的元素。这种方法可同时进行多种元素的定性分析。(2)标准试样光谱比较法,定性分析时将元素的纯物质与试样并列摄谱于同一感光板上。在映谱仪上以这些元素纯物质所出现的光谱线于试样中所出现的谱线进行比较,如果试样光谱中有谱线与这些元素纯物质光谱出现在同一波长位置,说明试样中存在这些元素。这种方法只适用于定性分析少数几种纯物质比较容易得到的指定元素。2.简述内标法基本原理和为什么要使用内标法。答:内标法是通过测量谱线相对强度进行定量分析的方法。通常在被测定元素的谱线中选一条灵敏线作为分析线,在基体元素(或定量加入的其它元素)的谱线中选一条谱线为比较线,又称为内标线。分析线与内标线的绝对强度的比值称为分析线对的相对强度。在工作条件相对变化时,分析线对两谱线的绝对强度均有变化,但对分析线对的相对强度影响不大,因此可准确地测定元素的含量。从光谱定量分析公式,可知谱线强度I与元素的浓度有关,还受到许多因素的影响,而内标法可消除工作条件变化等大部分因素带来的影响。3.选择内标元素及分析线对的原则是什么?答:(1)内标元素与分析元素的蒸发特性应该相近,这样可使电极温度的变化对谱线的相对强度的影响较小。(2)内标元素可以是基体元素,也可以是外加元素,但其含量必须固定。(3)分析线与内标线的激发电位和电离电位应尽量接近,以使它们的相对强度不受激发条件改变的影响。(4)分析线对的波长、强度也应尽量接近,以减少测定误差。(5)分析线对应无干扰、无自吸,光谱背景也应尽量小。4.下列光谱定量关系式分别在什么情况下使用?(1)(2)(3)(4)(5)答:(1)应用于被测元素含量很低时的绝对强度法光谱定量分析;(2)采用内标法进行元素的定量分析时。(3)在用摄谱法进行定量分析时;(4)采用光电直读光谱进行定量分析时;(5)采用光电直读光谱分析内标法进行定量分析时。55/55 1.讨论并绘出下列函数的一般图象。(1),S¾谱线黑度,H¾曝光量;(2),I¾谱线强度;(3),T¾激发温度;(4),c¾被测定元素的含量;(5),DS¾分析线对黑度差;(6),cs¾加入的标准量。答:对应的关系式分别为(1);(2);(3);(4);(5);(6)绘图略。2.已知光栅刻痕密度为1200mm-1,当入射光垂直入射时(q=0°),求波长为300nm的光在一级光谱中的衍射角j为多少度。解:已知光栅公式,,q=0°,,,代入公式得,3.已知光栅刻痕密度为1200mm-1,暗箱物镜的焦距为1m,求使用一级和二级衍射光谱时,光栅光谱仪的倒线色散率。解:已知,,,代入公式可得,;,4.某光栅光谱仪的光栅刻痕密度为2400mm-1,光栅宽度为50mm,求此光谱仪对一级光谱的理论分辨率。该光谱仪能否将Nb309.418nm与Al309.271nm两谱线分开?为什么?解:<该光谱仪不能将这两条谱线分开。5.某光栅光谱仪的光栅刻痕密度为2000mm-1,光栅宽度为50mm,f=0.65m,试求:(1)当cosj=1时,该光谱仪二级光谱的倒线色散率为多少?(2)若只有30mm宽的光栅被照明,二级光谱的分辨率是多少?55/55 (3)在波长560nm时,该光谱仪理论上能完全分开两条谱线的最小波长差是多少?解:(1)cosj=1时,(2)(3)。1.已知某光栅摄谱仪的一级闪耀波长为350nm,试估算该光谱仪适用于一级和二级光谱的波长范围。解:光栅适用的光谱波长范围当时,适用的波长范围为当时,适用的波长范围为。2.测定钢中猛的含量,测量得分析线对黑度值SMn=134,SFe=130。已知感光板的g=2.0,求此分析线对的强度比。解:分析线对的黑度差,,,代入得。3.用标准加入法测定SiO2中微量铁的质量分数时,以Fe302.06nm为分析线,Si302.00nm为内标线。标准系列中Fe加入量和分析线对测得值列于下表中,试绘制工作曲线,求试样中SiO2中Fe得质量分数。wFe/%00.0010.0020.003R0.240.370.510.63解:标准加入法的定量关系式为,以对作图如下55/55 当工作曲线与横坐标相交时,,此时,从图上可得出。1.应用电感耦合等离子体摄谱分析法测定某合金中铅的含量,以镁作内标,铅标准系列溶液的质量浓度和分析线、内标线黑度测得值列于下表中。试绘制工作曲线,求算A、B、C合金中铅的含量,以mg×mL-1表示。编号SPbSMgrPb/mg×mL-1117.57.30.151218.58.70.201311.07.30.301412.010.30.402510.411.60.502A15.58.8B12.59.2C12.210.7解:摄谱法定量分析的关系式为,以对作图如下55/55 算得、、,由工作曲线查得铅浓度分别为,,。55/55 第七章原子吸收与原子荧光光谱法1.解释下列名词:(1)原子吸收线和原子发射线;(2)宽带吸收和窄带吸收;(3)积分吸收和峰值吸收;(4)谱线的自然宽度和变宽;(5)谱线的热变宽和压力变宽;(6)石墨炉原子化法和氢化物发生原子化法;(7)光谱通带;(8)基体改进剂;(9)特征浓度和特征质量;(10)共振原子荧光和非共振原子荧光。答:(1)原子吸收线是基态原子吸收一定辐射能后被激发跃迁到不同的较高能态产生的光谱线;原子发射线是基态原子吸收一定的能量(光能、电能或辐射能)后被激发跃迁到较高的能态,然后从较高的能态跃迁回到基态时产生的光谱线。(2)分子或离子的吸收为宽带吸收;气态基态原子的吸收为窄带吸收。(3)积分吸收是吸收线轮廓的内的总面积即吸收系数对频率的积分;峰值吸收是中心频率n0两旁很窄(dn=0)范围内的积分吸收。(4)在无外界条件影响时,谱线的固有宽度称为自然宽度;由各种因素引起的谱线宽度增加称为变宽。(5)谱线的热变宽是由原子在空间作相对热运动引起的谱线变宽;压力变宽是由同种辐射原子间或辐射原子与其它粒子间相互碰撞产生的谱线变宽,与气体的压力有关,又称为压力变宽。(6)以石墨管作为电阻发热体使试样中待测元素原子化的方法称为石墨炉原子化法;反应生成的挥发性氢化物在以电加热或火焰加热的石英管原子化器中的原子化称为氢化物发生原子化法。(7)光谱通带是指单色器出射光束波长区间的宽度。(8)基体改进剂是指能改变基体或被测定元素化合物的热稳定性以避免化学干扰的化学试剂。(9)把能产生1%吸收或产生0.0044吸光度时所对应的被测定元素的质量浓度定义为元素的特征浓度;把能产生1%吸收或产生0.0044吸光度时所对应的被测定元素的质量定义为元素的特征质量。(10)共振原子荧光是指气态基态原子吸收的辐射和发射的荧光波长相同时产生的荧光;气态基态原子吸收的辐射和发射的荧光波长不相同时产生的荧光称为非共振原子荧光。2.在原子吸收光谱法中,为什么要使用锐线光源?空心阴极灯为什么可以发射出强度大的锐线光源?答:因为原子吸收线的半宽度约为10-3nm,所以在原子吸收光谱法中应使用锐线光源;由于空心阴极灯的工作电流一般在1~20mA,放电时的温度较低,被溅射出的阴极自由原子密度也很低,同时又因为是在低压气氛中放电,因此发射线的热变宽DlD、压力变宽DlL和自吸变宽都很小,辐射出的特征谱线是半宽度很窄的锐线(10-4~10-3nm)。加上空心阴极灯的特殊结构,气态基态原子停留时间长,激发效率高,因而可以发射出强度大的锐线光源。3.试从原理和仪器装置两方面比较原子吸收分光光度法与紫外-可见分光光度法的异同点。答:(1)相似之处:a.都是吸收光谱;b.工作波段相同190-900nm;c.仪器的主要组成部分相同,光源、单色器、吸收池、检测器;d.定量分析公式相似A=Kc。(2)不同之处:a.吸收机理不同,分子吸收为宽频吸收,带状光谱,而原子吸收为窄带、峰值吸收,线状光谱;b.仪器组成部分的排列不同,分子吸收为光源-单色器-吸收池-检测器,原子吸收为锐线光源-原子化器(吸收池)-单色器-检测器(单色器作用不同);c.光源不同,分子光谱为连续光源,钨灯、氢灯,原子光谱为锐线光源,空心阴极灯;d.55/55 光源的工作方式不同,分子光谱为直流信号,原子光谱为交流信号;e.检测器不同,分子光谱为宽频吸收,信号强,普通光电池、光电管。光电倍增管,原子光谱为窄带吸收,信号弱,必须用光电倍增管。1.简述原子吸收光谱法的准确度一般优于原子发射光谱法的主要原因何在?答:在原子吸收测量条件下,测量对象是占原子总数99%以上的基态原子,而原子发射光谱测量的是占少数的激发态原子,温度的变化主要影响激发态原子数的变化,而它们在原子吸收测量条件下占原子总数不到1%,对基态原子数的影响很小,因此原子吸收光谱法的准确度要优于原子发射光谱法。2.简述原子吸收峰值测量法的基本原理。答:原子峰值吸收测量是在中心频率n0两旁很窄(dn=0)范围内的积分吸收测量,此时Kn=K0。在原子化器中吸收线的变宽以多普勒变宽DlD为主,根据经典理论,峰值吸收系数K0与DnD成反比,与积分吸收成正比,,由于Kn=K0,代入可得,合并常数后得,即原子吸收峰值测量的基础。3.说明原子吸收光谱仪的主要组成部件及其作用。答:原子吸收光谱仪主要由(1)锐线光源,发射谱线宽度很窄的元素共振线;(2)原子化器,将试样蒸发并使待测元素转化为基态原子蒸气;(3)分光系统,使锐线光源辐射的共振发射线正确地通过或聚焦于原子化区,把透过光聚焦于单色器的入射狭缝,并将待测元素的吸收线与邻近谱线分开;(4)检测系统,将待测光信号转换成电信号,经过检波放大、数据处理后显示结果;(5)电源同步调制系统,消除火焰发射产生的直流信号对测定的干扰。4.在原子吸收光谱仪和原子荧光光谱仪中对光源如何进行调制?为什么要进行光源调制?答:采用和空心阴极灯同频率的脉冲或方波调制电源,组成同步检波放大器,仅放大调频信号,为了消除原子化器中的原子发射干扰。5.试比较石墨炉原子吸收光谱分析法与火焰原子吸收光谱分析法的优缺点,并说明GF-AAS法绝对灵敏度高的原因。答:(1)石墨炉原子吸收光谱分析法的优点是:试样用量少,液体几微升,固体几毫克;原子化效率几乎达到100%;基态原子在吸收区停留时间长,约为10-1s,因此绝对灵敏度极高。缺点是:精密度较差,操作也比较复杂。(2)火焰原子吸收光谱分析法的优点是:对大多数元素有较高的灵敏度,应用广泛,但原子化过程中副反应较多,不仅使气态基态原子数目减少,使测定方法的灵敏度降低,而且会产生各种干扰效应。6.哪些测定条件影响原子吸收光谱分析的灵敏度?答:(1)分析线,通常选择元素的共振吸收线作为分析线以得到最好的灵敏度;(2)单色器光谱通带,合适的光谱通带可提高灵敏度;(3)灯电流,尽量使用最低的灯电流;(4)原子化条件,在火焰原子吸收中,选择使入射光束从基态原子密度最大区域通过的原子化条件以提高分析的灵敏度,在石墨炉原子吸收法中,在保证完全原子化条件下尽量使用低的原子化温度。55/55 1.下列说法正确与否?为什么?(1)原子化温度越高,基态气态原子密度越大;(2)空心阴极灯工作电流越大,光源辐射的强度越大,测定的灵敏度越高;(3)原子吸收分光光度计用调制光源可以消除荧光发射干扰;(4)原子荧光分光光度计可不用单色器;(5)采用标准加入法可以提高分析方法的灵敏度;(6)原子荧光发射强度仅与试样中待测元素的含量有关,而与激发光源的强度无关。答:(1)错,在原子吸收光谱中,基态气态原子密度N0受温度影响很小,基本不随温度变化;(2)错,空心阴极灯的电流太大,放电不稳,信噪比严重下降,灵敏度降低;(3)错,在原子吸收分光光度计中用调制光源是为消除原子化器中的原子发射干扰;(4)对,由于原子荧光的谱线比较简单,可不用单色器;(5)错,标准加入法的测定中是在同一条件下进行,因此并不能提高分析方法的灵敏度,而它能消除基体干扰和某些化学干扰,故可以提高分析的准确度。(6)错,,与成正比,所以,与也成正比。2.原子吸收光谱分析法中,背景干扰是怎样产生的?如何抑制和校正光谱背景?简述用氘灯校正背景吸收的原理。答:原子吸收光谱分析法中的背景干扰是由原子化过程中产生的分子吸收和固体微粒产生的光散射引起的干扰。在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰,在石墨炉原子吸收光谱分析中,常选用适当基体改进剂,采用选择性挥发来抑制分子吸收的干扰;在原子吸收光谱分析中,可采用仪器调零吸收法、邻近线校正背景法、氘灯校正背景法和塞曼效应校正背景法等方法来校正背景。氘灯校正背景是采用双光束外光路,氘灯光束为参比光束。氘灯是一种高压氘气气体(D2)放电灯,辐射190~350nm的连续光谱。切光器使入射强度相等的锐线辐射和连续辐射交替地通过原子化吸收区。用锐线光源测定地吸光度值为原子吸收和背景吸收的总吸光度值,而用氘灯测定的吸光度仅为背景吸收值,这是因为连续光谱被基态原子的吸收值相对于总吸光度可以忽略不计。仪器上直接显示出两次测定的吸光度之差,即是经过背景校正后的被测定元素的吸光度值。3.试从原理和仪器装置两方面比较AAS法和AFS法的异同点。答:(1)AAS法和AFS法是基本原理完全不同的两种分析方法,前者基于气态基态原子对辐射的吸收,后者基于气态基态原子在辐射能激发下产生荧光发射,属于发射光谱分析法。(2)AAS法和AFS法所用仪器相近,均有光源、原子化器、分光系统、检测系统和电源同步调制系统组成,不同的是AAS用的是锐线光源,AFS除可以使用锐线光源外,还可以使用连续光源;仪器位置不同,在AFS中,激发光源置于与分光系统(或与检测系统)相互垂直的位置,而AAS中,在同一直线方向上。4.计算火焰温度2000K时,Ba553.56nm谱线的激发态与基态原子数的比值。已知gi/g0=3。解:55/55 1.在火焰温度3000K时,Cu324.75nm谱线的热变宽为多少?(MCu=63.54)解:2.原子吸收分光光度计的单色器的倒线色散率为1.6nm×mm-1,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施?解:已知,,代入可得,要使测定Si251.61nm的吸收值时,多重线Si251.43nm和Si251.92nm不产生干扰,则应使狭缝宽度小于0.113mm。3.某原子吸收分光光度计的单色器的倒线色散率为2.0nm×mm-1,狭缝宽度分别为0.04mm、0.08mm、0.12mm、0.16mm和0.2mm,求相应的光谱通带宽度是多少?解:已知,分别代入和值可求得光谱通带宽度分别为,,,,。4.为检查原子吸收光谱仪的灵敏度,以2mg×mL-1的Be标准溶液,用Be234.86nm的吸收线测得透射比为35%,计算其灵敏度为多少?解:灵敏度用特征浓度表示为5.用原子吸收光谱分析法测定铅含量时,以0.1mg×mL-1质量浓度的铅标准溶液测得吸光度为0.24,连续11次测得空白值的标准偏差为0.012,试计算其检出限。解:6.已知用原子吸收法测镁时的灵敏度为0.005mg×mL-1,试样中镁的含量约为0.01%55/55 ,配制试液时最适宜质量浓度范围为多少?若制备50mL试液时,应该称取多少克试样?解:已知,最适宜的吸光度A的范围为0.15~0.80,代入可得最适宜的质量浓度范围为。若制备50mL试液,应称取的试样质量在之间。1.用标准加入法测定血浆中锂的含量时,取4份0.50mL血浆试样,分别加入浓度为0.0500mol×L-1的LiCl标准溶液0.0mL,10.0mL,20.0mL,30.0mL,然后用水稀释至5.00mL并摇匀,用Li670.8nm分析线测得吸光度依次为0.201,0.414,0.622,0.835。计算血浆中锂的含量,以mg×mL-1表示。解:已知,以对作图如下当A=0时,直线与X轴的交点,血浆中锂的含量为。2.用火焰原子吸收法以Ca422.7nm吸收线测定血清中的钙。配制钙标准系列溶液的浓度(单位为mmol×L-1)分别为0.0,1.5,2.0,2.5,3.0,3.5,测得吸光度分别为0,0.43,0.58,0.72,0.85,1.00。取0.5mL血清加入9.5mL4%三氯乙酸沉淀蛋白质后,清液喷入火焰测得吸光度为0.68。求血清中钙含量为多少?如果血清中含有PO43-,所得结果是偏高还是偏低?为什么?解:已知,测定钙的标准曲线图如下55/55 从图上可得吸光度值为0.68的血清中钙的含量为。如果血清中含有PO43-,由于与Ca2+生成难挥发的Ca2P2O7,将会使测定结果偏低。1.用原子吸收法测定矿石中钼含量。制备的试样溶液每100mL含矿石1.23g,而制备的钼标准溶液每100mL含钼2.00´10-3g。取10.00mL试样溶液于100mL容量瓶中,另一个100mL容量瓶中加入10.00mL试样溶液和10.00mL钼标准溶液,定容摇匀,分别测得吸光度为0.421和0.863,求矿石中钼的含量。解:矿石中钼的含量为。55/55 第八章电化学分析导论1.答:液接电位产生于具有不同电解质或浓度不同的同种电解质溶液界面之间,由于离子扩散通过界面的速率不同,有微小的电位差产生,这种电位差称为液接电位。2.答:负极:电子流出的极正极:电子流入的极阴极:接电源负极阳极:接电源正极3.答:指示电极:在电化学测试过程中,溶液主体浓度不发生变化的电极参比电极:在测量过程中,具有恒定电位的电极4:解:左:+2e==+=-0.764+=-0.793右:=0.681=1.474,所以是原电池。5.解:左边:=0.059255/55 ==6.解:左边:7.解:55/55 55/55 第九章电位分析法1.答:玻璃膜的化学组成对电极的性能影响很大,纯制成的石英玻璃就不具有响应氢离子的功能。如果在石英玻璃中加入碱金属的氧化物,将引起硅氧键断裂形成荷电的硅氧交换电位。当玻璃电极浸泡在水中时,溶液中氢离子可进入玻璃膜与钠离子交换而占据钠离子的电位。由于氢离子取代了钠离子的电位,玻璃膜表面形成了一个类似硅酸结构的水化胶层。当被氢离子全部占有交换电位的水化胶层与试液接触时,由于它们的氢离子活度不同就会发生扩散,氢离子的扩散破坏了膜外表面与试液间两相界面的电荷分布,从而产生电位差,形成相界电位。同理,膜内表面与内参比溶液两相界面也产生相界电位,显然,相界电位的大小与两相间的氢离子活度有关,其关系为:因此,玻璃膜内外侧之间的电位差为作为玻璃电极的整体,玻璃电极的电位应包含有内参比电极的电位,即:或2.答:由于无法测量,在实际测定中,溶液的是通过与标准缓冲溶液的相比较而确定的。用电位法测定溶液的时,先用标准缓冲溶液定位,然后直接在计上读出试液的。注意的事所选择的标准缓冲溶液的尽量与未知液的接近,这样可以减小测量误差。3.答:银电极银电极离子选择性电极铂电极4.解:终点二分之一时此时55/55 终点二分之一时5.解:6.解:=2.337.解:55/55 =6.508.解:=0.179.解:55/55 10.解:15.5015.6015.7015.80E7.708.249.4310.035.411.9665-59=15.56ml(2)滴定至一半时的体积滴定一半为:=5.47+(6.60-5.47)=5.6此时而滴定至一半时:55/55 第十章极谱分析法3.答:极谱分析是微量分析方法,测定依次在电极发生的物质的量的多少。4.答:底液,即含有支持电解质,除氧剂,络合剂及极大抑制剂的溶液。10.解:对于可逆波:11.解:设50试液中浓度为则:解得=试样质量数为:12.解:50中溶液则:试样中质量为:13.解:由可逆金属的极谱波方程得:55/55 从上式接得=20从(1)式或(2)式得=-0.64V14.解:=-879V15.解:以对作图由可求0.0000.02000.06000.1000.3000.500-0.692-1.083-1.113-1.128-1.152-1.170-1.699-1.222-1-0.523-0.301=0时即为的半波电位。=—0.692V作图或求直线的方程得:=-0.06066—1.1867755/55 斜率得络合物组成:截距—=-1.18677得=16.解:在0.0V处,只有,得到,浓度等于的浓度,即:由尤考方程得:①在-1.5V处。溶液中发生还原反应的总浓度为+30.0=2即:30.0=即:15.0=②①—得:②55/55 第十一章电解及库仑分析法1.答:分解电压:在电解时,能够使被电解物质在两电极上产生迅速,连续的惦记反应,所需的最低外加电压。只有当外加电压达到能克服此电解池的反电动势时,电解才能继续进行,i-U曲线上的电解电流才能随外加电压的增大显著上升。2.答:在控制电流电解分析中,由于电解电流大,并且基本恒定,因此电解效率高,分析速度快。但由于阴极电位不断负移,其它种离子也有可能沉积下来,所以选择性差。由于控制阴极电位能有效的防止共存离子的干扰,因此选择性好。该法既可作定量测量,又可广泛地用作分离技术,常用于多种金属离子共存情况下的某一种离子的测定。6.答:库仑分析的先决条件是电流效率为100%。电流效率是指被测物质所消耗的电量()与通过电解池的总电量()实际应用中由于副反应的存在,使100%的电流效率很难实现,其主要原因为:1.溶剂的电极效应常用的溶剂为水,其电极反应主要是H的还原和水的电解。利用控制工作电极电位和溶液PH的办法能防止氢或氧在电极上析出。若用有机溶剂及其它混合溶液作电解液,为防止它们的电解,应事先取空白溶液绘制—U曲线,以确定适宜的电压范围及电解条件。2.电活性杂质在电极上的反应试剂及溶剂中微量易还原或易氧化的杂质在电极上反应也回影响电流效率。可以用纯试剂作空白加以校正消除;也可以通过预电解除去杂质,即用比所选定的阴极电位负0.3—0.4V的阴极电位对试剂进行预电解,直至电流降低到残余电流为止。3.溶液中可溶性气体的电极反应溶解气体主要是空气中的氧气,它会在阴极上还原为或。除去溶解氧的方法是在电解前通入惰性气体(一般为氮气)数分钟,必要时应在惰性气氛下电解。4.电解自身参与反应如电极本身在电解液中溶解,可用惰性电极或其它材料制成的电极。5.电解产物的再反应常见的是两个电极上的电解产物会相互反应,或一个电极上的反应产物又在另一个电极上的反应。防止的办法是选择合适的电解液或电极;采用隔膜套将阳极或阴极隔开;将辅助电极置于另一容器内,用盐桥相连接。6.共存元素的电解若式样中共存元素与被测离子同时在电极上反应,则应预先进行分离。7.解:(1.1)=0.681V55/55 =0.346V(2)Ag析出完全时电位为:=0.385V可完全分离。阴极控制电位在0.385V或0.385-0.346V之间8.解:=0.307V=-0.166V阴极上先析出析出完全时,阴极电位为:=0.337-+0=0.159VCu和Sn可完全分离阴极电位控制在0.159V或-0.1660.159V之间,即可完全分离Cu和Sn。9.解:=-0.793V+0.70=-0.093V55/55 =-0.433V+0.48=0.047Cd先析出Zn开始沉积时电位为10.解:阴极:=0阳极:=1.23=1.23-0+0.487-0+0=1.717V11.解:=-0.822V-0.822=-0.0592+(-0.40)=7.1>7.112.解:55/55 13.解:55/55 第十二章色谱分析法1.简要说明气相色谱法的分离原理。答:利用不同物质在固定相和流动相中具有不同的分配系数,当两相作相对移动时,使这些物质在两相间进行反复多次分配,原来微小的分配差异产生了很明显的分离效果,从而依先后顺序流出色谱柱。2.气相色谱仪有哪些主要部件,各有什么作用?答:气相色谱仪的主要部件有:高压气瓶、气化室、恒温箱、色谱柱、检测器。高压气瓶:储存载气。气化室:将液体或固体试样瞬间气化,以保证色谱峰有较小的宽度。色谱柱:分离试样。恒温箱:严格控制色谱柱的温度。检测器:检测从色谱柱中流出的样品。3.试述热导池检测器及氢火焰电离检测器的工作原理。答:热导池检测器是基于被分离组分与载气的导热系数不同进行检测的,当通过热导池池体的气体组成及浓度发生变化时,引起热敏元件温度的改变,由此产生的电阻值变化通过惠斯登电桥检测,其检测信号大小和组分浓度成正比。氢火焰电离检测器是根据含碳有机物在氢火焰中发生电离的电理而进行检测的。4.根据速率理论方程式,讨论气相色谱操作条件的选择。答:见课本214~216页。5.试述速率理论方程式中A、B/μ、Cμ三项的物理意义。答:A:涡流扩散项,在填充色谱中,当组分随载气向柱出口迁移时,碰到填充物颗粒阻碍会不断改变流动方向,使组分在气相中形成紊乱的类似“涡流”的流动,因而引起色谱峰的变宽。B/μ:分子扩散项,是由于色谱柱内沿轴向存在浓度剃度,使组分分子随载气迁移时自发地产生由高浓度向低浓度的扩散,从而使色谱峰变宽。Cμ:传质阻力项。6.如何选择气—液色谱固定液?答:(1)极性组分,一般选择非极性固定液。(2)中等极性的组分,一般选用中等极性的固定液。(3)强极性组分,选用强极性固定液。(4)极性与非极性组分的混合物,一般选用极性固定液。7.色谱定性和定量分析的依据是什么?各有哪些主要定性和定量方法。答:色谱定性分析的依据是:保留值。主要的定性分析方法:(1)利用保留值与已知物对照定性。(2)利用保留值经验规律定性。(3)根据文献保留数据定性。色谱定量分析的依据是:被测组分的质量与其色谱峰面积成正比。主要的定量分析方法:(1)归一化法。(2)内标法。(3)标准曲线法。8.进行色谱定量分析时,为什么需使用定量校正因子?何种情况下可不使用校正因子?答:见课本231页。9.进行气相色谱分析时,其实验条件如下:柱温为125℃,进口压力为130.0kPa,出口压力为100kPa,用皂膜流量计于27℃测得柱出口载气流量为29.5mL·min-155/55 ,在此温度下的水蒸气分压为2.70kPa,空气的保留时间为0.12min,试样中某组分的保留时间为5.34min。计算:(1)压力校正因子j;(2)校正到柱温柱压下的平均载气流量;(3)死体积V0;(4)该组分的调整保留体积。解:(1)(2)(3)(4)10.某色谱柱长60.0cm,柱内经0.8cm,载气流量为30mL·mL-1,空气、苯和甲苯的保留时间分别是0.25min,1.58min和3.43nin。计算:(1)苯的分配比;(2)柱的流动相体积Vg和固定相体积Vl(假设柱的总体积为Vg+Vl);(3)苯的分配系数;(4)甲苯对苯的相对保留值。解:(1)(2)(3)(4)11.某色谱柱的柱效能相当于104块理论塔板。当所得色谱峰的保留时间为100s、1000s和104s时的峰底宽度(Wb)分别是多少?假设色谱峰均为符合正态分布。解:55/55 12.在一根色谱柱上测得某组分的调整保留时间为1.94min,峰底宽度为9.7s,假设色谱峰呈正态分布,色谱柱的长度为1m,试计算该色谱柱的有效理论塔板及有效理论塔板高度。解:13.在一个柱效能相当于4200块有效理论塔板的色谱柱上,十八烷及α-甲基十七烷的调整保留时间分别为15.05min及14.82min。(1)这两个化合物在此色谱柱上的分离度是多少?(2)如果需要分离度R=1.0,需要多少块有效理论塔板?解:14.在一根3m长的色谱柱上,分析某试样时,得到两个组分的调整保留时间分别为13min及16min,后者的峰底宽度为1min,计算:(1)该色谱柱的有效理论塔板数;(2)两个组分的相对保留值;(3)如欲使两个组分的分离度R=1.5,需要有效理论塔板数为多少?此时应使用多长的色谱柱?解:55/55 15.对某特定的气相色谱体系,假设范第姆特方程式中的常数A=0.05cm,B=0.50cm2·s-1,C=0.10s。计算其最佳线速度和相应的最小理论塔板高度。解:16.某色谱柱长2m,载气线速度分别为4.0cm·s-1,6.0cm·s-1和8.0cm·s-1时,测得相应的理论塔板数为323,308和253。计算:(1)范第姆特方程中的A、B、C;(2)最佳线速度;(3)在最佳线速度时,色谱柱的理论塔板数。解:55/55 17.化合物A与正二十四烷及二十五烷相混合注入色谱柱进行试验,测得的调整保留时间为:A10.20min;n-C24H509.81min;n-C25H5211.56min。计算化合物A的保留指数(IA).解:55/55 18.对只含有乙醇、正庚烷、苯和乙醇乙酯的某化合物进行色谱分析,其测定数据如下:化合物乙醇正庚烷苯乙醇乙酯Ai/cm25.09.04.07.0fi0.640.700.780.79计算各组分的质量分数。解:19.用甲醇作内标,称取0.0573g甲醇和5.869g环氧丙烷试样,混合后进行色谱分析,测得甲醇和水的峰面积分别为164mm2和186mm2,校正因子分别为0.59和0.56。计算环氧丙烷中水的质量分数。解:55/55 20.用色谱法测定花生中农药(稳杀特)的残留量。称取5.00g试样,经适当处理后,用石油醚萃取其中的稳杀特,提取液稀释到500mL。用该试液5μL进行色谱分析,测得稳杀特峰面积为48.6mm2,同样进5μL纯稳杀特标样,其质量浓度为5.0×10-5ng﹒μL-1,测得色谱峰面积为56.8mm2。计算花生中稳杀特的残留量,以ng﹒g-1表示之。解:附录什麽是仪器分析?一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。这些方法一般都有独立的方法原理及理论基础。仪器分析的分类1.光分析法光谱法和非光谱法非光谱法是指那些不以光的波长为征的寻号,仅通过测量电磁幅射的某些基本性质(反射,折射,干射,衍射,偏振等)。光谱法则是以光的吸收,发射和拉曼散射等作用而建立的光谱方法。这类方法比较多,是主要的光分析方法。2.电分析化学方法以电讯号作为计量关系的一类方法,主要有五大类:电导、电位、电解、库仑及伏安。3.色谱法是一类分离分析方法,主要有气相色谱和液相色谱。4.其它仪器分析方法①质谱,②热分析,③放射分析一.原子光谱的产生55/55 原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,既得到发射光谱。激发电位:从低能级到高能级需要的能量.共振线:具有最低激发电位的谱线.原子线(Ⅰ)离子线(Ⅱ,Ⅲ)相似谱线Ni=N0gi/g0e-Ei/kT(2)gi,g0为激发态和基态的统计权,Ei为激发电位,K为Boltzmann常数,T为温度。2)代入(1)得:Iij=gi/g0AijhυijN0e-Ei/kT此式为谱线强度公式。Iij正比于基态原子N0,也就是说Iij∝C,这就是定量分析依据。影响Iij的因素很多,分别讨论如下:1.光谱项原子光谱是由原子外层的价电子在两能级间跃迁而产生的,原子的能级通常用光谱项符号来表示:n2S+1LJornMLJn为主量子数;L为总量子数;S为总自旋量子数;J为内量子数。M=2S+1,称为谱线的多重性。J又称光谱支项。跃迁遵循选择定则:1.主量子数n变化,Δn为整数,包括0。2.总角量子数L的变化,ΔL=±1。3.内量子数J变化,ΔJ=0,±1。但当J=0时,ΔJ=0的跃迁是禁戒的。4.总自旋量子数S的变化,ΔS=0,即单重项只跃迁到单重项,三重项只跃迁到三重项。2.自蚀在谱线上,常用r表示自吸,R表示自蚀。在共振线上,自吸严重时谱线变宽,称为共振变宽击穿电压:使电极间击穿而发生自持放电的最小电压。自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。燃烧电压:自持放电发生后,为了维持放电所必需的电压。55/55 由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。⑵.分辩率实际分辩率:指摄谱仪的每毫米感光板上所能分辩开的谱线的条数。或在感光板上恰能分辨出来的两条谱线的距离。理论分辩率R=λ/Δλ注:λ为两谱线的平均值,Δλ为它们的差值。b.平面光栅Δ=d(sinφ+sinφ′)当Δ=±Kλ,则Kλ=d(sinφ+sinφ′)-----为光栅公式.例:对一块宽度为50mm,刻线数为600条/mm的光栅,它的一级光栅的分辩能力为多少?解:R=1×50×600=3×104此时,在6000埃附近的两条谱线的距离为多少?解:Δλ=λ/R=6000/3000=0.2埃当内标元素的含量一定时,C2为常数;又当内标线无自吸时,b2=1此时,I2=a2分析线对的强度可表示为:I1/I2=aCb取对数后,得到:logR=log(I1/I2)=blogC+loga此为内标法定量分析的基本公式。使用内标法必须具备下列条件:1.分析线对应具有相同或相近的激发电位和电离电位。2.内标元素与分析元素应具有相近的沸点,化学活性及相近的原子量。3.内标元素的含量,应不随分析元素的含量变化而变化。4.内标线及分析线自吸要小。5.分析线和内标线附近的背景应尽量小。6.分析线对的波长,强度及宽度也尽量接近。原子吸收光谱法(AAS)一.基本原理:它是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的一种方法。基态第一激发态,又回到基态,发射出光谱线,称共振发射线。同样从基态跃迂至第一激发态所产生的吸收谱线称为共振吸收线(简称为共振线)。锐线光源空心阴极灯:即发射线半宽度远小于吸收线半宽度光源.55/55 当用线光源时,可用K0代替Kν,用吸光度表示:A=lgI0/I=lg[1/exp(-K01)]=0.43K01A=k•N•1锐线光产生原理:在高压电场下,阴极向正极高速飞溅放电,与载气原子碰撞,使之电离放出二次电子,而使场内正离子和电子增加以维持电流。载气离子在电场中大大加速,获得足够的能量,轰击阴极表面时,可将被测元素原子从晶格中轰击出来,即谓溅射,溅射出的原子大量聚集在空心阴极内,与其它粒子碰撞而被激发,发射出相应元素的特征谱线-----共振谱线。化学计量火焰由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰,温度高、稳定、干扰小背景低,适合于许多元素的测定。富燃火焰指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。贫燃火焰指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。光谱通带:W=D•S被测元素共振吸收线与干扰线近,选用W要小,干扰线较远,可用大的W,一般单色器色散率一定,仅调狭缝确定W。物理干扰:是指试液与标准溶液物理性质有差别而产生的干扰。粘度、表面张力或溶液密度等变化,影响样品雾化和气溶胶到达火焰的传递等会引起的原子吸收强度的变化。非选择性干扰。消除方法:配制被测试样组成相近溶液,或用标准化加入法。浓度高可用稀释法化学干扰:化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化。电离干扰:在高温下原子会电离使基态原子数减少,吸收下降,称电离干扰.消除的方法是加入过量消电离剂,所谓的消电离剂,是电离电位较低的元素,加入时,产生大量电子,抑制被测元素电离.光谱干扰:吸收线重叠待测元素分析线与共存元素的吸收线重叠背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。背景干扰,一般使吸收值增加。产生正误差。标准加入法:Ax=kCA0=k(C0+Cx)Cx=AxC0/(A0-Ax)标准加入法能消除基体干扰,不能消背景干扰。使用时,注意要扣除背景干扰。习惯灵敏度现定义:特征浓度,是指产生1%吸收时,水溶液中某元素的浓度。通常用mg/ml/1%表示半反应式的写法及电极符号:Ox+ne-=Red以还原形式表示,规定金属电极与标准氢电极组成电池时,金属带静电的符号为正电荷时,则其电极电位为正值,金属带负电荷时,则其电极电位为负值。推广之,任何两电极组成的电池,正者即为“正极”,负者即为“负极”。化学电池是化学能与电能互相转换的装置.能自发地将化学能转变成电能的装置称为原电池;而需要从外部电源提供电能迫使电流通过,使电池内部发生电极反应的装置称为电解电池。当电池工作时,电流必须在电池内部和外部流通,构成回路。电流是电荷的流动,外部电路是金属导体,移动的是带负电荷的电子。电池内部是电解质溶液,移动的是分别带正、负电荷的离子。为使电流能在整个回路中通过,必须在两个电极的金属/溶液界面处发生有电子跃迁的电极反应,即离子从电极上取得电子,或将电子交给电极。通常将发生氧化反应的电极(离子失去电子)称为阳极,发生还原反应的电极(离子得到电子)称为阴极。写电池式的规则:(1)左边电极进行氧化反应,右边电极进行还原反应。(2)电极的两相界面和不相混的两种溶液之间的界面、都用单竖线“︱”55/55 表示。当两种溶液通过盐桥连接时,已消除液接电位时,则用双竖线“‖”表示。(3)电解质位于两电极之间。(4)气体或均相电极反应,反应本身不能直接作电极,要用惰性材料作电极,以传导电流,在表示图中要指出何种电极材料(如Pt,Au,c等)。(5)电池中的溶液应注明浓(活)度,如有气体则应注明压力,温度,若不注明系指摄氏25oC和1大气压。发生氧化反应的电极称为阳极,发生还原反应的电极称为阴极。而电极的正和负是由两电极二者相比较,正者为正,负者为负。也就是说,阳极不一定是正极,负极也不一定是阴极。膜电位:膜电位是膜内扩散电位和膜与电解质溶液形成的内外界面的Dinann电位的代数和。φM=φD外+φd+φD内选择电极电位φISE:φISE=φ内参+φM=k*±RT/FlnαI外k*内包括了φd,φ内参,αⅡ,αI内常数。E电=φSCE—φISE对参比电极的要求要有“三性”(1)可逆性有电流流过(μA)时,反转变号时,电位基本上保持不变。(2)重现性溶液的浓度和温度改变时,按Nernst响应,无滞后现象。(3)稳定性测量中电位保持恒定、并具有长的使用寿命。抗原是一种进入机体后能刺激机体产生免疫反应的物质.它可能是生物体(如各种微生物),也可能是非生物体(如各种异类蛋白、多糖等).设在铂电极上电解硫酸铜溶液(装置见图15k-l)。当外加电压较小时,不能引起电极反应,几乎没有电流或只有很小电流通过电解池。如继续增大外加电压,电流略为增加,直到外加电压增加至某一数值后,通过电解池的电流明显变大。这时的电极位位称析出电位(φ析),电池上的电压称分解电压(E分).而发生的电解现象是,阴极上Cu2+离子比H+离子更易被还原Faraday定律:电解过程中,在电极上析出的物质的重量与通过电解池的电量之间的关系,遵守Faraday定律电流效率ηe为:ηe=ie/(ie+is+iimp)×100%=ie/iT×100%由恒电流发生器产生的恒电流通过电解池,被测物质直接在电极上反应或在电极附近由于电极反应产生一种能与被测物质起作用的试剂,当被测物质作用完毕后,由指示终点的仪器发出信号,立即关掉计时器。由电解进行的时间t(S)和电流强度(A),可求算出被测物质的量W(g)。此法又称为控制电流库仑滴定法,简称为库仑滴定法。这种方法并不测量体积而测量电量。它与普通容量分析法突出的不同点在于,滴定剂不是由滴定管向被测溶液中滴加,而是通过恒电流电解在试液内部产生,电生滴定剂的量又与电解所消耗的电量成正比。因此,可以说库仑滴定是一种以电子作一滴定剂的容量分析。在电解池中,上述三种传质过程总是同时发生的.然而,在一定条件下起主要作用的往往只有其中的一种或两种.例如,即使不搅拌溶液,在离电极表面较远处液流速度的数值往往比电极附近的大几个数量级,因而扩散和电迁传质作用可以忽略不计.但是,在电极表面附近的薄层液体中,液流速度却一般很小,因而起主要作用的是扩散及电迁过程.如果溶液中除参加电极反应的粒子外还存在大量不参加电极反应的“惰性电解质”,则粒子的电迁速度将大大减小.在这种情况下,可以认为电极表面附近薄层液体中仅存在扩散传质过程.这就是伏安和极谱需要的研究条件。充电电流(ic)—电容电流—非Faraday电流扩散电流(i)—极限扩散电流(id)极限电流(iI)=id+ir迁移电流(im)—电场引起残余电流(ir)→iF+ic氧化电流(ia)—还原电流(ic)55/55 扩散→浓差极化→完全浓差极化溶出安伏法包含电解富集和电解溶出两个过程.首先是电解富集过程.它是将工作电极固定在产生极限电流电位(图)进行电解,使被测物质富集在电极上.为了提高富集效果,可同时使电极旋转或搅拌溶液,以加快被测物质输送到电极表面.富集物质的量则与电极电位、电极面积、电解时间和搅拌速度等因素有关。极谱催化波是一种动力波.动力波则是一类在电极反应过程中同时还受某些化学反应速度所控制的极谱电流.根据有关化学反应的情况,可以将其分为三种类型:先行反应简称CE过程,平行反应简称EC(R)过程,后行反应简称EC过程.质谱法是通过将样品转化为运动的气态离子并按质荷比(M/Z)大小进行分离并记录其信息的分析方法。所得结果以图谱表达,即所谓的质谱图(亦称质谱,MassSpectrum)。根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。而在实际工作中,有时很难找到相邻的且峰高相等的两个峰,同时峰谷又为峰高的10%。在这种情况下,可任选一单峰,测其峰高5%处的峰宽W0.05,即可当作上式中的Δm,此时分辨率定义为R=m/W0.05质谱仪的分辨本领由几个因素决定:(i)离子通道的半径;(ii)加速器与收集器狭缝宽度;(iii)离子源的性质。质谱仪的灵敏度有绝对灵敏度、相对灵敏度和分析灵敏度等几种表示方法。绝对灵敏度是指仪器可以检测到的最小样品量;相对灵敏度是指仪器可以同时检测的大组分与小组分含量之比;分析灵敏度则指输入仪器的样品量与仪器输出的信号之比。质量分析器的主要类型有:磁分析器、飞行时间分析器、四极滤质器、离子捕获分析器和离子回旋共振分析器等。分子离子峰:试样分子在高能电子撞击下产生正离子分子离子的质量对应于中性分子的质量,这对解释本知质谱十分重要。几乎所有的有机分子都可以产生可以辨认的分子离子峰,有些分子如芳香环分子可产生较大的分子离子峰,而高分子量的烃、脂肪醇、醚及胺等则产生较小的分子离子峰。若不考虑同位素的影响,分子离子应该具有最高质量。分子中若含有偶数个氮原子,则相对分子质量将是偶数;反之,将是奇数。这就是所谓的“氮律”。由于分子离子峰的相对强度直接与分子离子稳定性有关,其大致顺序是:芳香环>共轭烯>烯>脂环>羰基化合物>直链碳氢化合物>醚>脂>胺>酸>醇>支链烃在同系物中,相对分子质量越大则分子离子峰相对强度越小。在低分辨的质谱仪上,则可以通过同位素相对丰度法推导其化学式,同位素离子峰相对强度与其中各元素的天然丰度及存在个数成正比,对于一个CwHxNyOz的化合物,其同位素离子峰(M+l)+、(M+2)+与分子离子峰M+的强度之比为原子荧光光谱法是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱的产生气态自由原子吸收特征辐射后跃迂到较高能级,然后又跃迁回到基态或较低能级。同时发射出与原激发辐射波长相同或不同的辐射即原子荧光。原子荧光为光致发光,二次发光,激发光源停止时,再发射过程立即停止。原子荧光的类型原子荧光分为共振荧光,非共振荧光与敏化荧光等三种类型,如图所示为荧光产生的过程(见图)。(1)共振荧光发射与原吸收线波长相同的荧光为共振荧光。(2)非共振荧光荧光的波长与激发光不同时,称非共振荧光。(i.直跃线荧光,ii.55/55 阶跃线荧光,iii.anti—stores荧光。i和ii均为Stores荧光。)(3)敏化荧光受激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再从辐射形式去激发而发射荧光即为敏化荧光。荧光猝灭受激原子和其他粒子碰撞,把一部分能量变成热运动与其他形式的能量,因而发生无辐射的去激发过程。不动的一相,称一为固定相;另一相是携带样品流过固定相的流动体,称为流动相。不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间试样从进样开始到柱后出现峰极大点时所经历的时间,称为保留时间某组份的保留时间扣除死时间后称为该组份的调整保留时间,即tR′=tR-tM死体积可由死时间与流动相体积流速F0(L/min)计算:VM=tM•F0指从进样开始到被测组份在柱后出现浓度极大点时所通过的流动相体积。保留体积与保留时间t。的关系如下:VR=tR•F0某组份的保留体积扣除死体积后,称该组份的调整保留体积,即VR′=VR-VM某组份2的调整保留值与组份1的调整保留值之比,称为相对保留值(必须注意,相对保留值绝对不是两个组份保留时间或保留体积之比.)α总是大于1的。W1/2=2.354σW=4σ从色谱流出曲线上,可以得到许多重要信息:(l)根据色谱峰的个数,可以判断样品中所合组份的最少个数.(2)根据色谱峰的保留值(或位置),可以进行定性分析.(3)根据色谱峰下的面积或峰高,可以进行定量分析.(4)色谱峰的保留值及其区域宽度,是评价色谱柱分离效能的依据.(5)色谱峰两峰间的距离,是评价固定相(和流动相)选择是否合适的依据.色谱分析的目的是将样品中各组分彼此分离,组分要达到完全分离,两峰间的距离必须足够远,两峰间的距离是由组分在两相间的分配系数决定的,即与色谱过程的热力学性质有关。但是两峰间虽有一定距离,如果每个峰都很宽,以致彼此重叠,还是不能分开。这些峰的宽或窄是由组分在色谱柱中传质和扩散行为决定的,即与色谱过程的动力学性质有关。因此,要从热力学和动力学两方面来研究色谱行为。描述这种分配的参数称为分配系数见它是指在一定温度和压力下,组分在固定相和流动相之间分配达平衡时的浓度之比值(K)分配比又称容量因子,它是指在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的质量比。(k)k值越大,说明组分在固定相中的量越多,相当于柱的容量大,因此又称分配容量或容量因子。它是衡量色谱柱对被分离组分保留能力的重要参数。k值也决定于组分及固定相热力学性质。它不仅随柱温、柱压变化而变化,而且还与流动相及固定相的体积有关。分配比k值可直接从色谱图测得。设流动相在柱内的线速度为u,组分在柱内线速度为us,由于固定相对组分有保留作用,所以us<u.此两速度之比称为滞留因子Rs。通过选择因子α把实验测量值k与热力学性质的分配系数K直接联系起来,α对固定相的选择具有实际意义。如果两组分的K或k值相等,则α=1,两个组分的色谱峰必将重合,说明分不开。两组分的K或k值相差越大,则分离得越好。因此两组分具有不同的分配系数是色谱分离的先决条件。R值越大,表明相邻两组分分离越好。一般说,当R<1时,两峰有部分重叠;当R=1时,分离程度可达98%;当R=1.5时,分离程度可达99.7%。通常用R=1.5作为相邻两组分已完全分离的标志。55/55 [例18-1]有一根lm长的柱子,分离组分1和2得到如图18d5的色谱图。图中横坐标l为记录笔走纸距离。若欲得到R=1.2的分离度,有效塔板数应为多少?色谱往要加到多长?(tM=5min,tR1=45min,tR2=49min,w1=w2=5mm)解:先求出组分2对组分1的相对保留值r2,1(即α值)[例18-2]已知某色谱柱的理论塔板数为3600,组分A和B在该柱上的保留时间为27mm和30mm,求两峰的峰半宽和分离度.解:∵w1/2=w/1.7w1=27/(3600/16)1/2=1.8mm(w1)1/2=1.8/1.7=1.06mmw2=30/(3600/16)1/2=2.0mm(w2)1/2=2.0/1.7=1.18mmR=2(30-27)/(1.8+2)=6/3.8=1.6[例18-3]已知一色谱柱在某温度下的速率方程的A=0.08cm;B=0.65cm2/s;C=0.003s,求最佳线速度u和最小塔板高H.解:欲求u最佳和H最小,要对速率方程微分,即dH/du=d(A+B/u+Cu)/du=-B/u2+C=0而,最佳线速:u最佳=(B/C)1/2最小板高:H最小=A+2(BC)1/2可得u最佳=(0.65/0.003)1/2=14.7cm/sH最小=0.08+2(0.65×0.003)1/2=0.1683cm[例18-4]已知物质A和B在一个30.0cm柱上的保留时间分别为16.40和17.63分钟.不被保留组分通过该柱的时间为1.30分钟.峰宽为1.11和1.21mm,计算:(1)柱分辨本领;(2)柱的平均塔板数目;(3)塔板高度;(4)达到1.5分离度所需的柱长度;(5)在较长柱上把物质B洗脱所需要的时间.解:(1)R=2(17.63-16.40)/(1.11+1.21)=1.06(2)nA=(16.40/1.11)2=3493nB=16(17.63/1.21)2=3397nav=(3493+3397)/2=3445=3.44×103(3)H=L/n=30.0/3445=8.708×10-3cm=8.71×10-3cm(4)n2=3445×2.25/1.124=6.90×103源于(n1/n2=R1/R2)2L=nH=6.90×103×8.71×10-3=60.1cm(5)tr2=tr1(R2/R1)2=17.63×1.52/1.062=35.3分钟红载体和白色载体:红色载体适宜于分析非极性或弱极性物质。白色载体适宜于分析各种极性化合物。人为规定正构烧烃的保留指数为其碳数乘100,如正己烷和正辛烷的保留指数分别为600和80O。至于其他物质的保留指数,则可采用两个相邻正构烷烃保留指数进行标定。测定时,将碳数为n和n+1的正构烷烃加于样品x中进行分析,若测得它们的调整保留时间分别为tr′(Cn),tr′(Cn+1;)和tr′(x)且tr′(Cn)<tr′(x)<tr(Cn+1)时,则组分X的保留指数可按下式计算,即55/55 气相色谱检测器是把载气里被分离的各组分的浓度或质量转换成电信号的装置。目前检测器的种类多达数十种。根据检测原理的不同,可将其分为浓度型检测器和质量型检测器两种:热导检测器和电子捕获检测器(浓度型检测器)火焰离子化检测器和火焰光度检测器(质量型检测器)热导检测器:几乎对所有物质都有响应,通用性好,而且线性范围宽,价格便宜,因此是应用最广,最成熟的一种检测器。火焰离子化检测器:比热导检测器的灵敏度高约103倍;检出限低,可达10-12g•S-1一个优良的检测器应具以下几个性能指标:灵敏度高,捡出限低,死体积小,响应迅速,线性范围宽,稳定性好。浓度型检测器灵敏度计算公式:质量型检测器灵敏度计算公式为:[例19.1]进样0.5μL纯苯,得色谱峰高h=6.25cm.半峰宽W1/2=0.25cm苯的密度为0.88g•cm-3,记录纸走速C1=0.5cm•min-1,检测器入口处载气流速Fc′=30cm3.min-1,记录仪满量程为10mV,满量程宽度25cm,求热导检测器的灵敏度。解:wi=0.5×10-3cm3×0.88×103mg•cm-3=0.44mgC2=10mV/25cm=0.4mV•cm-1Ai=1.065h•W1/2=1.065×6.25cm×0.25cm=1.065×6.25×0.25cm2将以上各式代人(19-6)式,得S=1.065×6.25×0.25cm2×0.4mV•cm-1×30cm3•min-1/(0.44mg×0.5cm•min-1)=90.8mV•cm3•mg-l检出限定义为:检测器恰能产生二倍于噪声信号时的单位时间(单位:S)引入检测器的样品量(单位:g),或单位体积(单位:cm3)载气中需含的样品量。具体方法是选择一根极性适宜,任意长度的色谱柱,测定两组分的分离度,然后根据基本色谱分离方程式,确定柱长是否适宜。[例19.3]在一根1m长的色谱柱上测得两组分的分离度为0.68,要使它们完全分离以(R=1.5),则柱长应为多少?解根据式(18-43),有即在其他操作条件不变的条件下,色谱柱长要选择5m左右才能使分离度达R=1.5,组分达到完全分离。柱长的选择具体方法是选择一根极性适宜,任意长度的色谱柱,测定两组分的分离度,然后根据基本色谱分离方程式,确定柱长是否适宜。柱温的选择在使最难分离的组分有尽可能好的分离前提下,采取适当低的柱温,但以保留时间适宜,峰形不拖尾为度。柱温不能高于固定液的最高使用温度进样量的选择一般说来,色谱柱越粗、越长,固定液含量越高,容许进样量越大。[例19-4]图19-15为乙酸正丁酯在阿皮松L柱上的流出曲线(柱温100℃)。由图中测得调整保留距离为:乙酸正丁酯310.0mm,正庆烷174.Omm,正辛烷373.4mm,求乙酸正下酯的保留指数。样品中各组分的定量校正因子与标准物的定量校正因子之比。准确称量被测组分和标准物质,混合后,在实验条件下进样分析(注意进样量应在线性范围之内),分别测量相应的峰面积,然后通过公式计算校正因子,如果数次测量数值接近,可取其平均值。对内标物的要求是:㈠样品中不含有内标物质;㈡55/55 峰的位置在各待测组分之间或与之相近;㈢稳定、易得纯品;㈣与样品能互溶但无化学反应;㈤内标物浓度恰当,使其峰面积与待测组分相差不太大。思考题1.气相色谱的基本设备包括那几部分,各有什么作用?2.试以塔极高度H做指标讨论气相色谱操作条件的选择。3.试述速率方程式中A、B、C三项的物理意义。4.为什么可用分辨率R作为色谱柱的总分离效能指标。5.能否根据理论塔板数来判断分离的可能性?为什么?6.对载体和固定液的要求分别是什么?7.试比较红色担体和白色担体的性能,它们各使用在哪些方面?8.固定液可分为哪几类?为什么这样划分?如何选择固定液。9.色谱定性的依据是什么,主要有哪些定性方法。10.色谱定量分析中为什么要用校正因子?在什么情况下可以不用?采用了高压泵、高效固定相和高灵敏度检测器,因而具备速度快、效率高、灵敏度高、操作自动化的特点。(l)气相色谱法分析对象只限于分析气体和沸点较低的化合物,它们仅占有机物总数的20%。对于占有机物总数近80%的那些高沸点、热稳定性差、摩尔质量大的物质,目前主要采用高效液相色谱法进行分离和分析。(2)气相色谱采用流动相是惰性气体,它对组分没有亲和力,即不产生相互作用力,仅起运载作用。而高效液相色谱法中流动相可选用不同极性的液体,选择余地大,它对组分可产生一定亲和力,并参与固定相对组分作用的剧烈竞争。因此,流动相对分离起很大作用,相当于增加了一个控制和改进分离条件的参数,这为选择最佳分离条件提供了极大方便。(3)气相色谱一般都在较高温度下进行的,而高效液相色谱法则经常可在室温条件下工作。总之,高效液相色谱法是吸取了气相色谱与经典液相色谱优点,并用现代化手段加以改进,因此得到迅猛的发展。目前高效液相色谱法已被广泛应用于分析对生物学和医药上有重大意义的大分子物质,例如蛋白质、核酸、氨基酸、多糖类、植物色素、高聚物、染料及药物等物质的分离和分析。一般可分为4个主要部分:高压输液系统,进样系统,分离系统和检测系统。液一液分配色谱法(LLPC)液液分配色谱的分离原理基本与液液萃取相同,都是根据物质在两种互不相溶的液体中溶解度的不同,具有不同的分配系数。化学键合相色谱法(CBPC)采用化学键合相的液相色谱称为化学键合相色谱法,简称键合相色谱。液一固吸附色谱法(LSAC)当流动相通过固定相(吸附剂)时,吸附剂表面的活性中心就要吸附流动相分子。同时,当试样分子(X)被流动相带入柱内,只要它们在固定相有一定程度的保留就要取代数目相当的已被吸附的流动相溶剂分用)于是,在固定相表面发生竞争吸附:离子交换色谱法(IEC)离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法。离子色谱法(IC)离子色谱法是由离子交换色谱法派生出来的一种分离方法。通过分离柱后的样品再经过抑制柱,使具有高背景电导的流动相转变成低背景电导的流动相,从而用电导检测器可直接检测各种离子的含量。离子对色谱法(IPC)离子对色谱法是将一种(或数种)与溶质离子电荷相反的离子(称对离子或反离子)加到流动相或固定相中,使其与溶质离子结合形成离子对,从而控制溶质离子保留行为的一种色谱法。尺寸排阻色谱法(SEC)基于试样分子的尺寸和形状不同来实现分离的。体积大的分子不能渗透到孔穴中去而被排阻,较早地被淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。55/55'