- 1.87 MB
- 2022-04-29 14:05:46 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'行业报告|行业深度研究半导体证券研究报告2017年09月16日投资评级人工智能芯片——新架构改变世界行业评级强于大市(维持评级)上次评级强于大市人工智能倒逼芯片底层的真正变革人类精密制造领域(半导体制造是目前为止人类制造领域的最巅峰)遇到硅作者基极限的挑战,摩尔定律的放缓似乎预示着底层架构上的芯片性能的再提升农冰立分析师已经出现瓶颈,而数据量的增长却呈现指数型的爆发,两者之间的不匹配势SAC执业证书编号:S1110516110006必会带来技术和产业上的变革升级。变革从底层架构开始。计算的体系处nongbingli@tfzq.com于碎片化引发架构变革。数据的扩张远大于处理器性能的扩张,依靠处理陈俊杰分析师SAC执业证书编号:S1110517070009器性能在摩尔定律推动下的提升的单极世界已经崩溃,处理器性能提升的速chenjunjie@tfzq.com度并不足以满足AI所需的应用程序的需求。大量数据消耗的数字运算能力比几年前所有数据中心加起来还要多。基于冯诺伊曼架构的拓扑结构已经持行业走势图续了很多年并没有本质上的变化。而人工智能带来的,是在摩尔定律放缓维度下引发芯片底层架构重构的变革。有可能引发的是一次超越以往任何半导体沪深300时代的科技革命13%基于摩尔定律的机器时代的架构——从Wintel到AA7%冯诺伊曼架构带来了计算体系的建立并通过Intel实现了最大化;ARM通过1%共享IP的商业模式带来了更开放的生态体系,实现了软硬件的结合延伸了-5%人类的触角观察Intel和ARM的黄金十年,站在现在时点往后看,我们提出-11%-17%以下观点:过去十年以下游的应用驱动设计公司的成长转换为由设计公司-23%主导应用正在发生。从需求层面看企业成长空间。类似90年代的PC和102016-092017-012017-05年的智能手机带来的亿级大空间增量市场将很容易推动企业的快速增长。设资料来源:贝格数据计企业能够在成长轨迹上实现跨越式突破的可能性来自于赛道的选择。但站在现在时点看,人工智能是确定性的方向,在所有已有领域的人工智能渗透,相关报告都将极大的改变人类的生活。处于最前沿的芯片公司的革新正在以此而发1《半导体-行业研究周报:一周半导体生,重新定义底层架构的芯片,从上游推动行业的变革。在并没有具体应行业观点:智能手机8月挹注台积电营用场景爆发之前已经给予芯片公司充分的高估值就是认可设计公司的价值收,4Q将成半导体产业链今年最强季,人工智能芯片——新架构的异军突起关注产业链公司》2017-09-10观察人工智能系统的搭建,以目前的架构而言,主要是以各种加速器来实现2《半导体-行业点评:边际改善提升业深度学习算法。讨论各种加速器的形式和实现,并探讨加速器变革下引发的绩增长,关注半导体族群》2017-09-09行业深层次转变。认为人工智能芯片将有可能在摩尔定律放缓维度下引发3《半导体-行业点评:抽丝剥茧——探芯片底层架构重构的变革。寻本轮半导体元器件涨价背后的原因》从2个维度测算人工智能芯片空间2017-04-01从两个维度讨论人工智能芯片的市场空间测算。维度一从人工智能总市场规模空间反推芯片,维度二详细拆分云端/移动端所需人工智能加速器的BOM进而推断人工智能芯片市场空间。二个维度印证到2020年人工智能芯片将达到百亿美元市场重点标的:Intel,台积电,NVIDIA,全志科技,富瀚微,北京君正风险提示:人工智能芯片发展不达预期请务必阅读正文之后的信息披露和免责申明1
行业报告|行业深度研究内容目录1.人工智能倒逼芯片底层的真正变革...........................................................................................42.基于摩尔定律的机器时代的架构——从Wintel到AA.........................................................62.1.Intel——PC时代的王者荣耀.......................................................................................................62.1.1.Intel公司简介........................................................................................................................62.1.2.Intel带来的PC行业的市场规模变革和产业变化....................................................72.2.ARM——开放生态下移动时代的新王加冕............................................................................92.2.1.ARM公司简介.......................................................................................................................92.2.2.ARM架构——重新塑造移动智能时代......................................................................102.2.3.生态的建立和商业模式的转变——ARM重塑了行业..........................................123.人工智能芯片——新架构的异军突起.....................................................................................153.1.GPU——旧瓶装新酒.....................................................................................................................163.1.1.GPU芯片王者——NVIDIA..............................................................................................173.2.FPGA——紧追GPU的步伐........................................................................................................193.3.ASIC——定制化的专用人工智能芯片....................................................................................213.3.1.VPU——你是我的眼.........................................................................................................223.3.1.TPU——Google的野心...................................................................................................233.4.人工神经网络芯片........................................................................................................................243.4.1.寒武纪——真正的不同...................................................................................................254.从2个维度测算人工智能芯片空间.........................................................................................265.重点标的.......................................................................................................................................29图表目录图1:遵从摩尔定律发展到微处理器发展..............................................................................................4图2:摩尔定律在放缓...................................................................................................................................4图3:全球智能手机每月产生的数据量(EB)5年提升了13X......................................................4图4:单一神经元VS复杂神经元..............................................................................................................5图5:2次应用驱动芯片发展......................................................................................................................6图6:英特尔x86处理器总市场份额........................................................................................................6图7:使用X86架构的单元.........................................................................................................................7图8:摩尔定律下推动下的Intel股价上扬.............................................................................................8图9:Intel2012Q1-2016Q4各产品线增速..........................................................................................8图10:Intel总产品收入VSPC端收入...................................................................................................8图11:IntelVS全球半导体增速.............................................................................................................8图12:ARM的商业模式...............................................................................................................................9图13:ARM架构的发展.............................................................................................................................10图14:高级消费电子产品正在结合更多的ARM技术.....................................................................12图15:ARM在智能手机中的成分...........................................................................................................13图16:基于ARM芯片的出货量..............................................................................................................13请务必阅读正文之后的信息披露和免责申明2
行业报告|行业深度研究图17:ARM在载有处理器芯片部门的市场占有率..........................................................................14图18:ARM收入及利润情况....................................................................................................................14图19:人工智能芯片产业链......................................................................................................................15图20:CPUVSGPU架构............................................................................................................................16图21:GPU架构流程...................................................................................................................................16图22:CPUVSGPU......................................................................................................................................17图23:GPU性能............................................................................................................................................17图24:2012-2016年NVIDIA营收情况................................................................................................18图25:2012-2016年NVIDIA毛利情况................................................................................................18图26:NVIDIA2017年上半年收入构成.................................................................................................18图27:FPGA架构..........................................................................................................................................20图28:FPGAVSCPU性能.........................................................................................................................20图29:FPGAVSCPU功耗.........................................................................................................................20图30:FPGA性能..........................................................................................................................................21图31:VPU架构............................................................................................................................................22图32:VPU模组...........................................................................................................................................22图33:VPU应用............................................................................................................................................23图34:3D景深结构......................................................................................................................................23图35:3D成像...............................................................................................................................................23图36:Google公司TPU架构...................................................................................................................23图37:Google公司TPU性能...................................................................................................................24图38:传统硬件处理方式..........................................................................................................................25图39:寒武纪处理方式...............................................................................................................................25图40:寒武纪芯片性能/能效....................................................................................................................25图41:终端和移动端....................................................................................................................................25图42:人工智能市场规模..........................................................................................................................26图43:人工智能芯片总市场规模............................................................................................................27表9:云端市场规模(单位:百万美元)............................................................................................28图44:云端领域人工智能芯片规模预测..............................................................................................28图45:终端领域人工智能芯片市场规模预测.....................................................................................29表1:ARM架构汇总....................................................................................................................................11表2:2020年ARM在各类型智能手机部件中的可获得的单机收入..........................................13表3:人工智能系统......................................................................................................................................15表4:NVIDIA出货芯片预测(单位:百万颗).................................................................................19表5:冯诺伊曼架构VSFPGA架构.........................................................................................................19表6:图像应用和语音应用人工智能定制芯片...................................................................................21表7:实现原理...............................................................................................................................................22表8:冯诺伊曼架构VS神经网络芯片架构........................................................................................24请务必阅读正文之后的信息披露和免责申明3
行业报告|行业深度研究1.人工智能倒逼芯片底层的真正变革研究人类的科技发展史,发现科技的进步速度呈现指数型加速态势。尤其在1950年以后进入芯片时代,摩尔定律推动下的每18个月“芯片晶体管同比例缩小一半”带来的性能提升以倍数计。每一次加速的过程推动,都引发了产业的深层次变革,带动从底层到系统的阶跃。我们本篇报告将着重从底层芯片角度出发,探讨人工智能芯片带来的深层次变革。图1:遵从摩尔定律发展到微处理器发展资料来源:Gartner,天风证券研究所然而时至今日,人类精密制造领域(半导体制造是目前为止人类制造领域的最巅峰)遇到硅基极限的挑战,摩尔定律的放缓似乎预示着底层架构上的芯片性能的再提升已经出现瓶颈,而数据量的增长却呈现指数型的爆发,两者之间的不匹配势必会带来技术和产业上的变革升级。图2:摩尔定律在放缓图3:全球智能手机每月产生的数据量(EB)5年提升了13X14121086420201220132014201520162017资料来源:IFS,天风证券研究所资料来源:CiscoVNL,天风证券研究所请务必阅读正文之后的信息披露和免责申明4
行业报告|行业深度研究变革从底层架构开始计算芯片的架构50多年来都没有发生过本质上的变化,请注意计算架构的决定是资源的组织形式。而传统的冯诺伊曼是采取控制流架构,采用的是线性的记忆体和布尔函数作为基线计算操作。处理器的架构基于流水线串行处理的机制建立,存储器和处理器分离,流水线的计算过程可以分解为取指令,执行,取数据,数据存储,依次循环。依靠整个串行的过程,逻辑清晰,但性能的提升通过两种方式,一是摩尔定律下推动下晶体管数量的增多实现性能倍增;二是通过并行多个芯片核来实现。无论何种方式,本质上都是线性的性能扩张。人工智能芯片根据数据流的碎片化和分布式而采取神经网络计算范式,特征在于分布式的表示和激活模式。变量由叠加在共享物理资源上的向量表示,并且通过神经元的激活来进行计算。以神经元架构实现深度学习人工智能的临界点实现主要原因在于:数据量的激增和计算机能力/成本。深度学习以神经元为架构。从单一的神经元,再到简单的神经网络,到一个用于语音识别的深层神经网络。层次间的复杂度呈几何倍数的递增。数据量的激增要求的就是芯片计算能力的提升。图4:单一神经元VS复杂神经元资料来源:NVIDIA,天风证券研究所计算的体系处于碎片化引发架构变革。数据的扩张远大于处理器性能的扩张,依靠处理器性能在摩尔定律推动下的提升的单极世界已经崩溃,处理器性能提升的速度并不足以满足AI所需的应用程序的需求。大量数据消耗的数字运算能力比几年前所有数据中心加起来还要多。我们在下一章将观察历史上两次重要的电子产业变革,试图证明无论是PC时代的“Wintel”还是智能手机时代的“ARM+Android”,都还无法摆脱机器本身的桎梏。换句话说,截止于现阶段的一切技术和应用,基于冯诺伊曼架构的拓扑结构已经持续了很多年并没有本质上的变化。而人工智能带来的,是在摩尔定律放缓维度下引发芯片底层架构重构的变革。有可能引发的是一次超越以往任何时代的科技革命。请务必阅读正文之后的信息披露和免责申明5
行业报告|行业深度研究2.基于摩尔定律的机器时代的架构——从Wintel到AA本章我们重点讨论两次芯片架构变化引发的产业变革和应用爆发。Intel与Windows结合构建PC生态,本质上诞生了软硬件结合的机器时代。而在其基础上的延升,2010后苹果带来的智能手机引发的ARM与Android生态,将机器与人的结合拓展到了移动端。我们回顾历史上的芯片架构历史,认为冯诺伊曼架构带来了计算体系的建立并通过Intel实现了最大化;ARM通过共享IP的商业模式带来了更开放的生态体系,实现了软硬件的结合延伸了人类的触角。图5:2次应用驱动芯片发展资料来源:SIA,天风证券研究所观察Intel和ARM的黄金十年,站在现在时点往后看,我们提出以下观点:过去十年以下游的应用驱动设计公司的成长转换为由设计公司主导应用正在发生。从需求层面看企业成长空间。类似90年代的PC和10年的智能手机带来的亿级大空间增量市场将很容易推动企业的快速增长。设计企业能够在成长轨迹上实现跨越式突破的可能性来自于赛道的选择。但站在现在时点看,人工智能是确定性的方向,在所有已有领域的人工智能渗透,都将极大的改变人类的生活。处于最前沿的芯片公司的革新正在以此而发生,重新定义底层架构的芯片,从上游推动行业的变革。在并没有具体应用场景爆发之前已经给予芯片公司充分的高估值就是认可设计公司的价值2.1.Intel——PC时代的王者荣耀本节重点阐述Intel公司在X86时代的芯片架构产品以及此架构下公司以及行业的变化。2.1.1.Intel公司简介Intel是一家成立于1968年的半导体制造公司,总部位于美国加州。随着个人电脑的普及和全球计算机工业的日益发展,公司逐渐发展成为全球最大的微处理器及相关零件的供应商。公司在2016年实现营业收入594亿美元,世界500强排名158。公司分为PC客户端部门、数据中心部门、物联网、移动及通讯部门、软件及服务运营,其他还有笔记本部门、新设备部门及NVM解决方案部门。公司主要营业收入来自于PC客户部门,其次是数据中心部门。公司的主要产品X86处理器占主导地位,接近90%,包括苹果在2006年放弃PowerPC改用英特尔的x86processors。图6:英特尔x86处理器总市场份额请务必阅读正文之后的信息披露和免责申明6
行业报告|行业深度研究95.00%90.00%85.00%80.00%75.00%70.00%65.00%02Q102Q403Q304Q205Q105Q406Q307Q208Q108Q409Q310Q211Q111Q412Q313Q214Q114Q415Q316Q2资料来源:Intel,天风证券研究所Intel是第一家推出x86架构处理器的公司。Intel从8086开始,286、386、486、586、P1、P2、P3、P4都用的同一种CPU架构,统称X86。大多数英特尔处理器都是基于x86指令集,被称为x86微处理器。指令集是微处理器可以遵循的基本命令集,它本质上是微处理器的芯片级“语言”。英特尔拥有x86架构的知识产权和给AMD和Via做处理器的许可权。图7:使用X86架构的单元80007000600050004000300020001000003Q103Q304Q104Q305Q105Q306Q106Q307Q107Q308Q108Q309Q109Q310Q110Q311Q111Q312Q112Q313Q113Q314Q114Q315Q115Q316Q116Q3资料来源:wind,天风证券研究所2.1.2.Intel带来的PC行业的市场规模变革和产业变化回顾Intel90年代至今发展历程,清晰看到90年代是Intel发展最快的阶段并在2000年前后达到了峰值。显而易见的原因是个人电脑的快速普及渗透。而遵从摩尔定律的每一代产品的推出,叠加个人电脑快速渗透的乘数效应,持续放大了企业的市值,类似于戴维斯双击,推动股价的一路上扬。请务必阅读正文之后的信息披露和免责申明7
行业报告|行业深度研究图8:摩尔定律下推动下的Intel股价上扬资料来源:Wind,天风证券研究所冯诺伊曼架构带来了计算体系的建立并通过Intel实现了最大化,但从本质上说,英特尔参与的是机器时代的兴起和计算芯片价值体现。但时至今日,在人口红利消散,PC渗透率达到稳定阶段,依托于PC时代的处理器芯片进入了稳定常态。英特尔在总产品收入提升的情况下,PC端提供的收入增长机会停滞。处理器依靠摩尔定律不断推经延续生命力,但在应用增长乏力的阶段缺乏爆发式的再增长。PC时代的处理器设计遵从了下游应用驱动上游芯片的实质。图9:Intel2012Q1-2016Q4各产品线增速图10:Intel总产品收入VSPC端收入资料来源:Intel,天风证券研究所资料来源:Intel,天风证券研究所进入2010年后,英特尔的处理器增速同半导体行业基本协同一致,毫无疑问超越行业增速的增长已经需要新的应用拉动。摩尔定律支撑了10多年的快速增长再出现边际改善的增长需要重新审视。图11:IntelVS全球半导体增速请务必阅读正文之后的信息披露和免责申明8
行业报告|行业深度研究资料来源:Intel,天风证券研究所2.2.ARM——开放生态下移动时代的新王加冕本节重点阐述ARM在移动时代的芯片架构产品以及此架构下公司以及行业的变化。2.2.1.ARM公司简介ARM公司是全球领先的半导体知识产权(IP)提供商,专门从事基于RISC技术芯片设计开发,并因此在数字电子产品的开发中处于核心地位。公司的前身Acorn于1978年在伦敦正式成立。1990年ARM从Acorn分拆出来。得益于20世纪90年代手机的快速发展,基于ARM技术的芯片出货量飞速增长,并于2017年宣布正式达成1000亿芯片出货量的里程碑。2016年7月,日本软银以320亿美元收购了ARM。ARM本身不直接从事芯片生产,只设计IP,包括指令集架构、微处理器、图形核心和互连架构,依靠转让设计许可由合作公司生产各具特色的芯片,目前它在世界范围有超过1100个的合作伙伴。ARM的创新型商业模式为公司带来了丰厚的回报率:它既使得ARM技术获得更多的第三方工具、制造、软件的支持,又使整个系统成本降低,使产品更容易进入市场被消费者所接受,更具有竞争力。正因为ARM的IP多种多样以及支持基于ARM的解决方案的芯片和软件体系十分庞大,全球领先的原始设备制造商(OEM)都在广泛使用ARM技术,因此ARM得以在智能手机、平板上一枝独秀,全世界超过95%的智能手机都采用ARM架构。图12:ARM的商业模式请务必阅读正文之后的信息披露和免责申明9
行业报告|行业深度研究资料来源:ARM,天风证券研究所2.2.2.ARM架构——重新塑造移动智能时代ARM沿用了冯诺伊曼架构,在性能和功耗上做到了更加平衡。在底层架构没有发生根本性变革的情况下,在架构的横向延伸上寻找到了技术的转换,从而实现了智能手机时代移动端的产品阶跃。处理器架构在根源上看ARM延续了X86的底层架构。正如我们在之前讨论架构时指出,处理器一般分为取指令,译码,发射,执行,写回五个步骤。而我们说的访存,指的是访问数据,不是指令抓取。访问数据的指令在前三步没有什么特殊,在第四步,它会被发送到存取单元,等待完成。与X86不同的是在指令集方面,ARM架构过去称作进阶精简指令机器(AdvancedRISCMachine),更早时期被称作AcornRISCMachine,是32位精简指令集(RISC)处理器架构,被广泛地使用在嵌入式系统设计中。在应用场景上有所不同。ARM指令集架构的主要特点:一是体积小、低功耗、低成本、高性能,因此ARM处理器非常适用于移动通讯领域;二是大量使用寄存器且大多数数据操作都在寄存器中完成,指令执行速度更快;三是寻址方式灵活简单,执行效率高;四是指令长度固定,可通过多流水线方式提高处理效率。图13:ARM架构的发展请务必阅读正文之后的信息披露和免责申明10
行业报告|行业深度研究资料来源:ARM,天风证券研究所表1:ARM架构汇总架构代表处理器简介ARMARM1V1ARMARM2、ARM3该版本架构对V1进行了扩展,包含了对32位乘法指令和协处理器指令的支持。版本2a是版本2V2的变种,ARM3芯片采用了版本2a,是第一片采用Cache的ARM处理器。ARMARM6、ARM7ARM作为独立的公司,在1990年设计的第一个微处理器采用的就是版本3的ARM6。它作为IPV3核、独立的处理器、具有片上高速缓存、MMCU和写缓冲的集成CPU。变种版本有3G和3M。版本3G是不与版本2a相兼容的版本3。版本3M引入了有符号和无符号数乘法和乘加指令。ARMARM7-TDMI,V4版架构在V3版上作了进一步扩充,V4版架构是目前应用最广的ARM架构。V4首次增加ThumbV4ARM720-T,指令集,不再强制要求与26位地址空间兼容,而且还明确了哪些指令会引起未定义指令异常。ARM9-TDMI,ARM920-T,ARM940-T等ARMARMv5TE指令集:V5版架构是在V4版基础上增加了一些新的指令,包括带有链接和交换的转移BLX指令;计数前导V5ARM9-E-S,零CLZ指令;BRK中断指令;增加了数字信号处理指令(V5TE版);为协处理器增加更多可选择的ARM1020-E,指令。ARM940-T等;ARMv5EJ指令集:ARM926-EJ-S,ARM7-EJ-S,ARM1026-EJ-S等ARMARM1136-J(F)-S,V6版架构于2001年正式发布,首先被应用在ARM11处理器。V6版架构在降低耗电量的同时,还V6ARM1156-J(F)-S,强化了图形处理性能。它还引进了包括单指令多数据(SIMD)运算在内的一系列新功能。通过追加ARM1176-J(F)-S,有效进行多媒体处理的SIMD(SingleInstruction,MultipleData,单指令多数据)功能,将语音及图ARM11MPCore等像的处理功能提高到了原型机的4倍。此外,还引进了作为ARMv6体系结构的变体的Thumb-2和TrustZone技术。ARMCortex-A、全新的ARMv7架构是在ARMv6架构的基础上诞生的。ARMv7架构采用了Thumb-2技术,它是在V7Cortex-M、ARM的Thumb代码压缩技术的基础上发展出来的,并且保持了对已存ARM解决方案的完整的代Cortex-R等码兼容性。此外,ARMv7还支持改良的运行环境,来迎合不断增加的JIT和DAC技术的使用。ARMv7请务必阅读正文之后的信息披露和免责申明11
行业报告|行业深度研究架构还包括NEON™技术扩展,可将DSP和媒体处理吞吐量提升高达400%,并提供改进的浮点支持以满足下一代3D图形和游戏以及传统嵌入式控制应用的需要。ARMCortex-A23、ARMv8是ARM公司的首款支持64位指令集的处理器架构,可在32位和64位之间切换。由于V8Cortex-A57、ARM处理器的授权内核被广泛用于手机等诸多电子产品,故ARMv8架构作为下一代处理器的核心Cortex-A53、技术而受到普遍关注。ARMv8是在32位ARM架构上进行开发的,主要被用于对扩展虚拟地址和Cortex-R52、64位数据处理技术有更高要求的产品领域。ARMv8是近20年来,ARM架构变动最大的一次。它Cortex-M23、引入的ExecutionState、ExceptionLevel、SecurityState等新特性,已经和我们对旧的ARM架构的Cortex-M33等认知。资料来源:ARM、满天芯,天风证券研究所2.2.3.生态的建立和商业模式的转变——ARM重塑了行业ARM的商业模式值得真正的关注。ARM通过授权和版税来赚取收入。使用ARM的授权,跟据流片的次数,可以付一次流片的费用,也可以买三年内无限次流片,更可以永久买断。芯片量产后,根据产量,会按百分比收一点版税。Intel通过售卖自己的芯片来赢得终端客户和市场,而ARM则是通过授权让全世界的芯片制造商使用自家的产品来推广。ARM的商业模式之所以在智能手机时代能够推广,是因为移动端的生态更为开放,自上而下的生态建立,不仅是芯片开发者,也包括软件开发者,都被构建在生态的范围内。智能移动设备上包含多件ARM的处理器/技术,每当智能手机上新增一个功能时,就为新的ARM知识产权带来了新的机会。2016年,ARM在移动应用处理器(包括智能手机、平板电脑和笔记本电脑)上,根据量的测算,其市场份额高达90%,同时ARM估计移动应用处理器规模将从2016年的200亿美元增长到2025年的300亿美元。图14:高级消费电子产品正在结合更多的ARM技术资料来源:ARM,天风证券研究所2016年,ARM各项技术在智能手机领域都有良好的渗透率:ARMv7-A技术早已完全渗入,ARMv8-A技术渗透率达到70%,Maligraphics达到50%,高核数技术(highcorecount)则为35%.请务必阅读正文之后的信息披露和免责申明12
行业报告|行业深度研究图15:ARM在智能手机中的成分资料来源:ARM,天风证券研究所根据ARM的预测,到2025年为止,智能手机设备的CAGR为3%左右,而ARM在这一板块的专利收入将会以大于5%的CAGR上涨。表2:2020年ARM在各类型智能手机部件中的可获得的单机收入智能手机类型部件ASP高端智能机应用处理器$15-$20连接传感器$5-$10中端智能机应用处理器$5-$15连接传感器$2-$3低端智能机应用处理器<$5连接传感器$1-$2资料来源:ARM,天风证券研究所ARM的累计出货量已经超过1000亿支,2016年全年发出的基于ARM技术芯片达到177亿,发货量在过去5年时间中CAGR将近15%。ARM的增长完美契合了智能手机的快速增长10年。图16:基于ARM芯片的出货量请务必阅读正文之后的信息披露和免责申明13
行业报告|行业深度研究资料来源:ARM,天风证券研究所图17:ARM在载有处理器芯片部门的市场占有率图18:ARM收入及利润情况资料来源:ARM,天风证券研究所资料来源:ARM,天风证券研究所请务必阅读正文之后的信息披露和免责申明14
行业报告|行业深度研究3.人工智能芯片——新架构的异军突起观察人工智能系统的搭建,以目前的架构而言,主要是以各种加速器来实现深度学习算法。本章讨论各种加速器的形式和实现,并探讨加速器变革下引发的行业深层次转变,并从2个维度给出详细的测算人工智能芯片的潜在空间首先我们必须描述人工智能对芯片的诉求,深度学习的目标是模仿人类神经网络感知外部世界的方法。深度学习算法的实现是人工智能芯片需要完成的任务。在算法没有发生质变的前提下,追根溯源,所有的加速器芯片都是为了实现算法而设计。表3:人工智能系统架构单元芯片功能芯片类型芯片厂商处理器收发指令,逻辑运算CPUIntel,ARM,AMD存储器数据/指令读写NAND、DRAM三星、海力士、美光大规模并行计算Nvidia,Google、加速器GPU、FPGA、ASICMovidius信息交换Avago,Skyworks,通信接口WiFi、BluetoothCSR资料来源:Wind,天风证券研究所我们整理了人工智能芯片相关的类型和产业链公司,传统的芯片厂商/生态的建立者/新进入者。传统的芯片制造厂商:Intel,Nvidia和AMD。他们的优势在于在已有架构上对人工智能的延伸,对于硬件的理解会优于竞争对手,但也会困顿于架构的囹圄;2上层生态的构建者进入芯片设计,比如苹果和Google,优势在于根据生态灵活开发定制各类ASIC,专用性强;新进入者,某些全新的架构比如神经网络芯片的寒武纪,因为是全新的市场开拓,具有后发先至的可能。新进入者的机会,因为是个全新的架构机会,将有机会诞生独角兽。图19:人工智能芯片产业链资料来源:Wind,半导体行业观察,天风证券研究所请务必阅读正文之后的信息披露和免责申明15
行业报告|行业深度研究3.1.GPU——旧瓶装新酒GPU使用SIMD(单指令多数据流)来让多个执行单元以同样的步伐来处理不同的数据,原本用于处理图像数据,但其离散化和分布式的特征,以及用矩阵运算替代布尔运算适合处理深度学习所需要的非线性离散数据。作为加速器的使用,可以实现深度学习算法。但注意的是,GPU架构依然基于冯诺伊曼。我们以GPU和CPU的对比来说明GPU所具有的架构特点。GPU由并行计算单元和控制单元以及存储单元构成GPU拥有大量的核(多达几千个核)和大量的高速内存,擅长做类似图像处理的并行计算,以矩阵的分布式形式来实现计算。同CPU不同的是,GPU的计算单元明显增多,特别适合大规模并行计算。图20:CPUVSGPU架构资料来源:NVIDIA,天风证券研究所注意GPU并行计算架构,其中的流处理器组(SMs)类似一个CPU核,多个流处理器组可实现数据的同时运算。因此,GPU主要适用于在数据层呈现很高的并行特性(data-parallelism)的应用。图21:GPU架构流程资料来源:NVIDIA,天风证券研究所请务必阅读正文之后的信息披露和免责申明16
行业报告|行业深度研究CPU和GPU本身架构方式和运算目的不同导致了CPU和GPU之间的不同,主要不同点列举如下图22:CPUVSGPU资料来源:Intel,天风证券研究所深度学习是利用复杂的多级「深度」神经网络来打造一些系统,这些系统能够从海量的未标记训练数据中进行特征检测。因为GPU可以平行处理大量琐碎信息。深度学习所依赖的是神经系统网络——与人类大脑神经高度相似的网络——而这种网络出现的目的,就是要在高速的状态下分析海量的数据。GPU擅长的是海量数据的快速处理GPU的特征决定了其特别适合做训练。机器学习的广泛应用:海量训练数据的出现以及GPU计算所提供的强大而高效的并行计算。人们利用GPU来训练这些深度神经网络,所使用的训练集大得多,所耗费的时间大幅缩短,占用的数据中心基础设施也少得多。GPU还被用于运行这些机器学习训练模型,以便在云端进行分类和预测,从而在耗费功率更低、占用基础设施更少的情况下能够支持远比从前更大的数据量和吞吐量。与单纯使用CPU的做法相比,GPU具有数以千计的计算核心、可实现10-100倍应用吞吐量,因此GPU已经成为数据科学家处理大数据的处理器。图23:GPU性能资料来源:NVIDIA,天风证券研究所3.1.1.GPU芯片王者——NVIDIANVIDIA是一家以设计GPU芯片为主业的半导体公司,其主要产品从应用领域划分,包括GPU(如游戏图形处理器GeForceGPU,深度学习处理器Tesla,图形处理器GRID等)和TegraProcessor(用于车载,包括DRIVEPX和SHIELD)等。GPU芯片构成公司最主要收入来源,2017年上半年,GPU贡献收入34.59亿美元,占公司总收入的83%;TegraProcessor请务必阅读正文之后的信息披露和免责申明17
行业报告|行业深度研究贡献收入6.65亿美元,占比16%,其他部分贡献收入1%。公司业绩稳定,营业收入除2013年略有下降外,2012-2016年均实现稳步增长,从42.80亿美元增至69.10亿美元,CAGR为10.05%;2016年公司实现净利16.66亿美元,相较于2012年的5.63亿美元,CAGR达24.23%。毛利润方面,公司毛利润从2012年的22.26亿美元增至2016年的40.63亿美元,实现稳步增长,毛利率维持在50%以上。图24:2012-2016年NVIDIA营收情况图25:2012-2016年NVIDIA毛利情况8000200%450070%4063691059%7000400055%56%56%60%150%350052%60005010281150%500046823000259942804130100%25002226226840%4000200030%50%30001500166620%20000%1000100056344063161410%5000-50%00%2012201320142015201620122013201420152016营业收入(百万美元)净利润(百万美元)毛利润(百万美元)毛利率营业收入增速毛利润增速毛利率增速净利润增速资料来源:公司年报,天风证券研究所资料来源:公司年报,天风证券研究所从收入构成来看,公司GPU芯片业务从2012年的32.52亿美元增至2016年的58.22亿美元,实现稳步增长,GPU业务在收入结构中占比稳定在76%以上。图26:NVIDIA2017年上半年收入构成8000700026482460005000264264559264579400026476439830005822200038394187325234681000020122013201420152016GPU(百万美元)TegraProcessor(百万美元)其他(百万美元)请务必阅读正文之后的信息披露和免责申明18
行业报告|行业深度研究资料来源:公司年报,天风证券研究所在高性能计算机、深度学习、人工智能等领域,NVIDIA的GPU芯片有十分关键的作用。NVIDIA的CUBA技术,大幅度提高了纯CPU构成的超级计算机的性能。人工智能和深度学习需要大量的浮点计算,在高性能计算领域,GPU需求在不断增强。目前NVIDIA的高性能显卡已经占有84%的市场份额。亚马逊的AWS,Facebook,Google等世界一级数据中心都需要用NVIDIA的Tesla芯片,随着云计算和人工智能的不断发展,我们认为NVIDIA的GPU芯片业务在未来将继续维持增长态势,我们分拆每个领域的出货量,预计将从2016年的3602万颗增至2018年的4175万颗。表4:NVIDIA出货芯片预测(单位:百万颗)201620172018游戏显卡303132高性能计算处理器33.23.5云端加速器0.050.110.66中端汽车芯片0.630.650.67高端汽车芯片2.343.874.92总计36.0238.8441.75资料来源:Wind,天风证券研究所3.2.FPGA——紧追GPU的步伐FPGA是用于解决专用集成电路的一种方案。专用集成电路是为特定用户或特定电子系统制作的集成电路。人工智能算法所需要的复杂并行电路的设计思路适合用FPGA实现。FPGA计算芯片布满“逻辑单元阵列”,内部包括可配置逻辑模块,输入输出模块和内部连线三个部分,相互之间既可实现组合逻辑功能又可实现时序逻辑功能的独立基本逻辑单元。注意FPGA与传统冯诺伊曼架构的最大不同之处在于内存的访问。FPGA在本质上是用硬件来实现软件的算法,因此在实现复杂算法方面有一些难度。表5:冯诺伊曼架构VSFPGA架构冯诺伊曼架构FPGA架构内存共享专用访问顺序访问仲裁,依次调用无须仲裁和缓存处理流程串行并行计算效率低高资料来源:Wind,天风证券研究所架构方面,FPGA拥有大量的可编程逻辑单元,可以根据客户定制来做针对性的算法设计。除此以外,在处理海量数据的时候,FPGA相比于CPU和GPU,独到的优势在于:FPGA请务必阅读正文之后的信息披露和免责申明19
行业报告|行业深度研究更接近IO。换句话说,FPGA是硬件底层的架构。比如,数据采用GPU计算,它先要进入内存,并在CPU指令下拷入GPU内存,在那边执行结束后再拷到内存被CPU继续处理,这过程并没有时间优势;而使用FPGA的话,数据I/O接口进入FPGA,在里面解帧后进行数据处理或预处理,然后通过PCIE接口送入内存让CPU处理,一些很底层的工作已经被FPGA处理完毕了(FPGA扮演协处理器的角色),且积累到一定数量后以DMA形式传输到内存,以中断通知CPU来处理,这样效率就高得多。图27:FPGA架构资料来源:人工智能实验室(AiLab),天风证券研究所性能方面,虽然FPGA的频率一般比CPU低,但CPU是通用处理器,做某个特定运算(如信号处理,图像处理)可能需要很多个时钟周期,而FPGA可以通过编程重组电路,直接生成专用电路,加上电路并行性,可能做这个特定运算只需要一个时钟周期。比如一般CPU每次只能处理4到8个指令,在FPGA上使用数据并行的方法可以每次处理256个或者更多的指令,让FPGA可以处理比CPU多很多的数据量。举个例子,CPU主频3GHz,FPGA主频200MHz,若做某个特定运算CPU需要30个时钟周期,FPGA只需一个,则耗时情况:CPU:30/3GHz=10ns;FPGA:1/200MHz=5ns。可以看到,FPGA做这个特定运算速度比CPU块,能帮助加速。FPGA相对于CPU与GPU有明显的能耗优势,主要有两个原因。首先,在FPGA中没有取指令与指令译码操作,在Intel的CPU里面,由于使用的是CISC架构,仅仅译码就占整个芯片能耗的50%;在GPU里面,取指令与译码也消耗了10%~20%的能耗。其次,FPGA的主频比CPU与GPU低很多,通常CPU与GPU都在1GHz到3GHz之间,而FPGA的主频一般在500MHz以下。如此大的频率差使得FPGA消耗的能耗远低于CPU与GPU。图28:FPGAVSCPU性能图29:FPGAVSCPU功耗请务必阅读正文之后的信息披露和免责申明20
行业报告|行业深度研究资料来源:Altera,天风证券研究所资料来源:Altera,天风证券研究所Intel167亿美元收购Altera,IBM与Xilinx的合作,都昭示着FPGA领域的变革,未来也将很快看到FPGA与个人应用和数据中心应用的整合根据Altera内部文件显示,Altera很早就在研发使用FPGA针对深度学习算法的应用,并在2015年Intel的论坛上展示了产品的性能。结论是在功耗和性能上相对同等级的CPU,有较大的优势。CPU+FPGA在人工智能深度学习领域,将会是未来的一个重要发展方向图30:FPGA性能资料来源:Altera,天风证券研究所3.3.ASIC——定制化的专用人工智能芯片ASIC(专用定制芯片)是为实现特定要求而定制的芯片,具有功耗低、可靠性高、性能高、体积小等优点,但不可编程,可扩展性不及FPGA,尤其适合适合高性能/低功耗的移动端。目前,VPU和TPU都是基于ASIC架构的设计。我们梳理针对图像和语音这两方面的人工智能定制芯片,目前主要有专用于图像处理的VPU,以及针对语音识别的FAGA和TPU芯片。表6:图像应用和语音应用人工智能定制芯片应用举例定制芯片自动驾驶、人脸识别、无人机图像应用VPU、GPU等语音识别、自然语言处理、实声音应用TPU时翻译等资料来源:Google,天风证券研究所请务必阅读正文之后的信息披露和免责申明21
行业报告|行业深度研究3.3.1.VPU——你是我的眼VPU是专门为图像处理和视觉处理设计的定制芯片。根据特定算法来实现定制化的芯片架构,实现特定的图像处理能力,提高效率,是VPU的基础理念。集成在摄像头中的VPU,直接对输入图像进行识别理解,消除了存储器的读写操作。相较主流的移动处理芯片(集成GPU的SoC),VPU的尺寸更小,视觉处理运算的效能更高。以Movidiu公司产品Myriad2为例,VPU芯片包括接口电路(Interfaces)、硬件加速器(HardwareAccelerators),矢量处理器阵列(ArrayofVectorProcessors),精简指令集的CPU(RISCCPU)等部分。接口电路支持多路摄像头传感器等外部设备,硬件加速器可以迅速的提高运算处理速度,矢量处理器阵列专门针对机器视觉,精简指令集的CPU(RISCCPU)主要进行任务分配。图31:VPU架构图32:VPU模组资料来源:Movidius,天风证券研究所资料来源:Movidius,天风证券研究所表7:实现原理功能接口电路支持多路摄像头传感器,WIFI设备,SD卡读写,惯性测量单元等支持图像信号和视觉信后的流水线信号处理,而不需再绕回内存进硬件加速器行处理,可以迅速的提高运算处理速度。矢量处理器阵列多个128位的具有超长指令集的矢量处理器,专门针对机器视觉。精简指令集的CPU32位的CPU,进行任务分配资料来源:Movidius,天风证券研究所VPU能够处理各种不同的任务:利用立体摄像机的数据处理深度信息,还有来自声纳传感器的近距离、空间定位,以及用于识别和跟随人的先进光流;它也可以成为虚拟现实、现实增强技术的核心部分,让智能手机以及更便宜的头戴产品达成现如今较为昂贵的系统才能完成的目标。如HTCVive,这台设备需要比较诡异的头戴式护目镜,还需要两个激光盒子绘制整个空间,并追踪用户的运动。而装备VPU通过移动设备或者耳机就能做到这一点;此外,具备深度学习能力的VPU,能够在设备本地就能利用强悍的图像识别计算,设备能够看见和理解周围的世界,不需要检索云端就能做到,避免了延迟的问题。目前,VPU的应用市场有机器人、物联网、智能穿戴设备、智能手机、无人驾驶、无人机等。请务必阅读正文之后的信息披露和免责申明22
行业报告|行业深度研究图33:VPU应用资料来源:Movidius,天风证券研究所结合光学,在前端实现智能处理识别运算的芯片,正在移动端不断渗透提升。在苹果推出带3D感应功能的结构光方案之后,我们预计会深度推动市场在向具有人工智能功能的特定芯片端迈进。VPU实现了在移动设备端具备PC级别的图像处理能力。通常来说这类图像处理芯片能耗非常高,而且也需要电脑支持,但通过VPU,成功将高级的图像处理方案移植到移动设备中。在前端设备中引入带有AI功能的新架构芯片将带来移动端价值量的提升和潜在的变革。图34:3D景深结构图35:3D成像资料来源:Movidius,天风证券研究所资料来源:Movidius,天风证券研究所3.3.1.TPU——Google的野心TPU(TensorProcessingUnit)是谷歌的张量处理器,它是一款为机器学习而定制的芯片,经过了专门深度机器学习方面的训练,它有更高效能。图3637:Google公司TPU架构请务必阅读正文之后的信息披露和免责申明23
行业报告|行业深度研究资料来源:Google,天风证券研究所Google对GPU,IntelXeonE5v3CPU和TPU进行了性能对比。在Google的测试中,使用64位浮点数学运算器的18核心运行在2.3GHz的HaswellXeonE5-2699v3处理器能够处理每秒1.3TOPS的运算,并提供51GB/秒的内存带宽;Haswell芯片功耗为145瓦,其系统(拥有256GB内存)满载时消耗455瓦特。相比之下,TPU使用8位整数数学运算器,拥有256GB的主机内存以及32GB的内存,能够实现34GB/秒的内存带宽,处理速度高达92TOPS,这比Haswell提升了71倍,此外,TPU服务器的热功率只有384瓦。但TPU是专为Google深度学习语言TensorFlow开发的一种芯片,不具有可扩展性。图3839:Google公司TPU性能资料来源:Google,天风证券研究所3.4.人工神经网络芯片从底层架构的变革角度看,最前沿的革新以深度学习原理打造的人工神经网络芯片。人工神经网络是模仿生物神经网络的计算架构的总称,由若干人工神经元节点互连而成,神经元之间通过突触连接。每个神经元其实是一个激励函数,突触则是记录神经元间联系的强弱权值。神经网络是多层的,一个神经元函数的输入由与其相连的上一个神经元的输出以及连接突触权重共同决定。所谓训练神经网络,就是通过不断自动调整神经元之间突触权重的过程,直到输出结果稳定正确。然后在输入新数据时,能够根据当前的突触权重计算出输出结果。以此来实现神经网络对已有知识的“学习”。神经网络中存储和处理是一体化的,中间计算结果化身为突触的权重。冯诺伊曼架构的传统处理器处理神经网络任务时效率低下,是由其本身的架构限制决定的。冯诺伊曼架构存储和处理分离,基本运算为算术和逻辑操作,这两点决定了一个神经元的处理需要成百上千条指令才能完成。以AlphaGo为例,总共需要1202个CPU+176个CPU。表8:冯诺伊曼架构VS神经网络芯片架构冯诺伊曼架构神经网络芯片架构基本架构存储/处理分离存储/处理一体化运算规则算术和逻辑操作激励函数和权重神经元计算复杂度成百上千条指令/神经元一条指令/神经元计算效率低高资料来源:Wind,天风证券研究所请务必阅读正文之后的信息披露和免责申明24
行业报告|行业深度研究3.4.1.寒武纪——真正的不同真正打造的类脑芯片,寒武纪试图将通过低功耗高性能的架构重塑,颠覆已有的冯诺伊曼架构,实现在移动端/云端的加速器实现。图4041:传统硬件处理方式图4243:寒武纪处理方式资料来源:寒武纪资料,天风证券研究所资料来源:寒武纪资料,天风证券研究所从寒武纪披露的数据来看,其性能远超GPU和CPU。图44:寒武纪芯片性能/能效资料来源:寒武纪资料,天风证券研究所寒武纪试图将代表性智能算法的处理速度和性能功耗比提升一万倍,在移动端实时完成图像语音和文本的理解和识别,更为重要的是通过实时训练,还能不断进化提升能力,真正实现超越。图45:终端和移动端请务必阅读正文之后的信息披露和免责申明25
行业报告|行业深度研究资料来源:寒武纪资料,天风证券研究所4.从2个维度测算人工智能芯片空间我们在前二章重点讨论了Intel和ARM的历史发展,认为冯诺伊曼架构带来了计算体系的建立并通过Intel实现了最大化;ARM通过共享IP的商业模式带来了更开放的生态体系,实现了软硬件的结合延伸了人类的触角。同时我们认为人工智能芯片将有可能在摩尔定律放缓维度下引发芯片底层架构重构的变革。本章我们重点讨论人工智能芯片的市场空间测算,我们从两个维度来进行估算,给出详细的拆解。维度一:市场规模反推芯片空间根据Nvidia官方给出的资料统计,到2020年,由软件、硬件、服务三者组成的人工智能市场将达到400亿美元,其中硬件占到1/3强,为160亿美元。而硬件的核心是芯片。我们估算硬件的BOM,芯片会占到60%,芯片空间将达到96亿美元。图46:人工智能市场规模请务必阅读正文之后的信息披露和免责申明26
行业报告|行业深度研究资料来源:NVIDIA,天风证券研究所维度2:详细拆分云端/移动端所需人工智能加速器的BOM人工智能芯片从用途来看,分为云端加速器芯片和终端(包括智能手机、无人驾驶汽车、)智能芯片。我们基于这两个场景,给出结论,预测至2021年,人工智能芯片市场有望达到111亿美元,CAGR达20.99%。图47:人工智能芯片总市场规模120.0032%35%28%30%100.0025%22%22%25%80.0020%60.0011115%9140.007510%604720.00365%0.000%20162017E2018E2019E2020E2021E人工智能芯片总市场规模(亿美元)人工智能芯片市场规模增速资料来源:Gartner,天风证券研究所云端加速器详细拆解具体来看云端方面,根据Gartner的统计,到2020年,全球云计算市场规模将达到3834亿美元,其中,云基础设施服务市场规模达863.5亿美元。请务必阅读正文之后的信息披露和免责申明27
行业报告|行业深度研究表48:云端市场规模(单位:百万美元)20162017E2018E2019E2020E2021E云业务流程服务(BPaaS)408124377247556516525617661096云应用程序服务(SaaS)385674633155143648707573488417云管理和安全服务7150876810427121591400416129云广告90257104516118520133566151091170915云应用基础设施服务7169885110616125801479817407云系统基础设施服务252903460345559578977155288428总计209245246841287821332724383355442393云基础设施服务市场规模3245943454561757047786350105835小计资料来源:Gartner,天风证券研究所我们假设深度学习相关基础设施占云基础设施的20%,而其中人工智能芯片占深度学习相关硬件BOM的50%,据此,我们测算云端方面人工智能芯片市场规模将从2016年的32亿美元增至2021年的106亿美元,CAGR达21.77%。图49:云端领域人工智能芯片规模预测12040%10635%10034%8629%30%8025%7025%23%23%566020%4315%403210%205%00%20162017E2018E2019E2020E2021E人工智能芯片市场规模(亿美元)增速资料来源:Gartner,天风证券研究所终端加速器市场详细拆解终端方面,目前人工智能芯片主要应用领域是智能手机、无人驾驶汽车和无人机。我们假设:1)智能手机全球出货量年均增速3.3%,主处理器平均价格15美元,带人工智能芯片模块占智能手机主处理器BOM的10%2)带人工智能功能的智能手机渗透率从2018的10%提升到2020年的40%。;3)无人驾驶汽车市场规模年均增速10%。因无人驾驶汽车以及其芯片市场均尚未成型,目前成本较高,我们假设芯片成本占总成本的20%,人工智能芯片占处理器成本的10%。据此预测终端领域人工智能芯片的市场规模。据此我们预测,在终端领域,至2021年,全球人工智能芯片市场规模由2016年的3.05亿美元增至5.55亿美元,CAGR为10.49%。其中,智能手机市场中,人工智能芯片由2016年的2.25亿美元增至2021年的4.26亿美元,CAGR为11.24%;无人驾驶汽车市场中,人请务必阅读正文之后的信息披露和免责申明28
行业报告|行业深度研究工智能芯片由2016年的0.80亿美元增至2021年的1.29亿美元,CAGR为8.27%。图50:终端领域人工智能芯片市场规模预测6.005.001.291.174.001.060.973.000.880.802.004.263.753.302.911.002.252.560.0020162017E2018E2019E2020E2021E智能手机市场(亿美元)无人驾驶汽车市场(亿美元)资料来源:Gartner,天风证券研究所5.重点标的台积电:无论是何种架构的人工智能芯片,都是依赖于台积电最先进制程的代工工艺,在全球只有台积电能够提供HPC(高性能计算芯片)的工艺平台上,行业的卡位优势已然确立,确定性受益标的。Intel:收购Altera,收购Movidius,CPU+FPGA方案,Intel在人工智能领域的布局长远,而通过我们的测算,服务器端将是人工智能芯片未来行业渗透和消耗的重点,而Intel在服务器端已经有深厚不可撼动的优势。NVIDIA:目前人工智能芯片领域的领跑者,深度学习训练领域的唯一方案选择。有完整的生态布局,针对云端+汽车自动驾驶,百亿美元新增市场的竞争者。寒武纪:寒武纪试图将代表性智能算法的处理速度和性能功耗比提升一万倍,在移动端实时完成图像语音和文本的理解和识别,更为重要的是通过实时训练,还能不断进化提升能力,真正实现超越。富瀚微:国内上市公司智能视频监控领域的前端芯片方案解决商,在前端芯片集成一定的智能算法功能处理。北京君正:积极进入视频监控领域的芯片方案解决商,曾经的MIPS方案芯片设计商,有芯片架构层基因,对标Movidius。全志科技:SoC芯片方案解决商,未来能将AI算法模块嵌入SoC之中。请务必阅读正文之后的信息披露和免责申明29
行业报告|行业深度研究分析师声明本报告署名分析师在此声明:我们具有中国证券业协会授予的证券投资咨询执业资格或相当的专业胜任能力,本报告所表述的所有观点均准确地反映了我们对标的证券和发行人的个人看法。我们所得报酬的任何部分不曾与,不与,也将不会与本报告中的具体投资建议或观点有直接或间接联系。一般声明除非另有规定,本报告中的所有材料版权均属天风证券股份有限公司(已获中国证监会许可的证券投资咨询业务资格)及其附属机构(以下统称“天风证券”)。未经天风证券事先书面授权,不得以任何方式修改、发送或者复制本报告及其所包含的材料、内容。所有本报告中使用的商标、服务标识及标记均为天风证券的商标、服务标识及标记。本报告是机密的,仅供我们的客户使用,天风证券不因收件人收到本报告而视其为天风证券的客户。本报告中的信息均来源于我们认为可靠的已公开资料,但天风证券对这些信息的准确性及完整性不作任何保证。本报告中的信息、意见等均仅供客户参考,不构成所述证券买卖的出价或征价邀请或要约。该等信息、意见并未考虑到获取本报告人员的具体投资目的、财务状况以及特定需求,在任何时候均不构成对任何人的个人推荐。客户应当对本报告中的信息和意见进行独立评估,并应同时考量各自的投资目的、财务状况和特定需求,必要时就法律、商业、财务、税收等方面咨询专家的意见。对依据或者使用本报告所造成的一切后果,天风证券及/或其关联人员均不承担任何法律责任。本报告所载的意见、评估及预测仅为本报告出具日的观点和判断。该等意见、评估及预测无需通知即可随时更改。过往的表现亦不应作为日后表现的预示和担保。在不同时期,天风证券可能会发出与本报告所载意见、评估及预测不一致的研究报告。天风证券的销售人员、交易人员以及其他专业人士可能会依据不同假设和标准、采用不同的分析方法而口头或书面发表与本报告意见及建议不一致的市场评论和/或交易观点。天风证券没有将此意见及建议向报告所有接收者进行更新的义务。天风证券的资产管理部门、自营部门以及其他投资业务部门可能独立做出与本报告中的意见或建议不一致的投资决策。特别声明在法律许可的情况下,天风证券可能会持有本报告中提及公司所发行的证券并进行交易,也可能为这些公司提供或争取提供投资银行、财务顾问和金融产品等各种金融服务。因此,投资者应当考虑到天风证券及/或其相关人员可能存在影响本报告观点客观性的潜在利益冲突,投资者请勿将本报告视为投资或其他决定的唯一参考依据。投资评级声明类别说明评级体系买入预期股价相对收益20%以上自报告日后的6个月内,相对同期沪增持预期股价相对收益10%-20%股票投资评级深300指数的涨跌幅持有预期股价相对收益-10%-10%卖出预期股价相对收益-10%以下强于大市预期行业指数涨幅5%以上自报告日后的6个月内,相对同期沪行业投资评级中性预期行业指数涨幅-5%-5%深300指数的涨跌幅弱于大市预期行业指数涨幅-5%以下天风证券研究北京武汉上海深圳北京市西城区佟麟阁路36号湖北武汉市武昌区中南路99上海市浦东新区兰花路333深圳市福田区益田路4068号邮编:100031号保利广场A座37楼号333世纪大厦20楼卓越时代广场36楼邮箱:research@tfzq.com邮编:430071邮编:201204邮编:518017电话:(8627)-87618889电话:(8621)-68815388电话:(86755)-82566970传真:(8627)-87618863传真:(8621)-68812910传真:(86755)-23913441邮箱:research@tfzq.com邮箱:research@tfzq.com邮箱:research@tfzq.com请务必阅读正文之后的信息披露和免责申明30'
您可能关注的文档
- 瑞信-美股-半导体行业-10月sia分析报告
- 泛半导体行业专题报告:半导体投资时钟
- 瑞信-亚洲-半导体行业-瑞信技术峰会2017:第一天要点
- 半导体行业:中国崛起正当时
- 瑞银-全球-半导体行业-汽车与工业半导体:不要摇动船——一个完美平衡的前景
- 泛半导体行业专题报告:“泛半导体”星汉灿烂,“核心资产”若出其里
- 半导体行业:十大里程碑看2018中国半导体!
- 电子行业:大基金二期启航,半导体行业向好
- 半导体行业2017年9月策略:人工智能芯片发布引发资本市场关注,行业基本面收益景气度持续
- 电子行业18年度投资策略报告:led行业继续高增长,半导体行业谨慎乐观
- 半导体行业专题研究:再论半导体设备企业的需求拉动与成长路径
- 电子行业:换机潮晚至不改半导体行业景气
- 半导体行业2018年度投资策略
- 半导体行业深度分析:人工智能芯片高热度揭示半导体产业方向,产业上行趋势更值得关注
- 电子行业半导体行业系列报告:晶圆涨价影响几何?
- 半导体行业2017年10月策略:消费电子产业旺季结合汽车电子等提升需求,产业链整体呈现扩张
- 半导体行业深度报告专题:大国重器势将崛起,中国半导体迎来成长周期